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Abstract  
 

We consider distribution and location-planning models for supply chains that explicitly 
account for traffic congestion effects. The majority of facility location and transportation 
planning models in the operations research literature consider facility operations and 
transportation costs as separable (e.g., linear) by origin-destination pairs. Our goal is to 
understand how congestion costs and effects, which are not separable, influence supply chain 
location and distribution decisions. We study a competitive facility location and market-supply 
game with multiple firms competing in multiple markets in a congested distribution network. As 
a result of location and quantity decisions, firms are subject to location-specific transportation 
costs, convex traffic congestion costs and fixed facility location costs. The unit price in each 
market is a linear decreasing function of the total amount shipped to the market by all firms; that 
is, we consider an oligopolistic Cournot game and analyze the two-stage Nash Equilibrium. We 
discuss the results of extensive numerical studies that illustrate the effects of traffic congestion 
on a firm's equilibrium location and quantity decisions and demonstrate the efficiency of our 
solution approaches for finding equilibrium solutions. 
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Executive Summary  
 

We consider distribution and location-planning models for supply chains that explicitly 
account for traffic congestion effects. The majority of facility location and transportation 
planning models in the operations research literature consider facility operations and 
transportation costs as separable (e.g., linear) by origin-destination pairs. Our goal is to 
understand how congestion costs and effects, which are not separable, influence supply chain 
location and distribution decisions. 

We first study a competitive facility location and market-supply game with multiple 
identical firms competing in multiple markets in a congested distribution network. As a result of 
location and quantity decisions, firms are subject to location-specific transportation costs, convex 
traffic congestion costs and fixed facility location costs. First, we study the supply quantity 
decisions for any firm when the location choices of the firms are identical. An oligopolistic 
Cournot game is analyzed to determine a Pure Nash Equilibrium (PNE) for these quantity 
decisions, and we provide analytical results on the effects of traffic congestion costs on the 
equilibrium quantities flowing from supply facilities to markets. We then focus on the location 
decisions of the firms. As firms are identical, firms will choose identical facility locations, and 
we therefore study the optimal location decisions for any individual firm. We discuss the results 
of extensive numerical studies that illustrate the effects of traffic congestion on a firm's location 
and quantity decisions and demonstrate the efficiency of our solution approach.  

We then study a set of heterogeneous competitive firms considering the location of 
uncapacitated facilities at a set of candidate locations in order to serve a set of markets. Each 
firm incurs firm-specific (linear) transportation costs, as well as convex congestion and fixed 
location costs as a result of location and distribution volume decisions. The unit price in each 
market is a linear decreasing function of the total amount shipped to the market by all firms; that 
is, we consider an oligopolistic Cournot game and analyze the two-stage Nash Equilibrium. This 
problem is referred to as the location-supply game, or competitive location game, and we first 
study the firms' market-supply decisions for given facility locations, i.e., the game's second 
stage. We formulate the problem of finding the equilibrium supply quantities as a variational 
inequality problem and provide a solution algorithm. Then we focus on the location decisions, 
i.e., the game's first stage. We provide rules to obtain a dominant location matrix, and use these 
rules in a heuristic solution approach to search for an equilibrium location matrix. Numerical 
results on the efficiency of the heuristic method are documented. 
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A Facility Location Problem with Supply   

Competition in a Congested Network 
 

 Dinçer Konur and Joseph Geunes  
 

1. Background 

Research on traffic network equilibrium problems, toll pricing (congestion pricing), and methods 
to mitigate traffic congestion have typically focused on the welfare of individual road users. 
However, recent studies identify the negative impacts traffic congestion has on supply chain 
operations. In particular, the performance of logistics operations is affected by traffic congestion, 
and these impacts are more drastic in Just-in-Time (JIT) production systems. Despite the fact that 
traffic congestion affects supply chain operations, most of the studies combining traffic 
congestion and supply chains are based on empirical data and lack theoretical results. Another 
problematic point is that traffic congestion effects are exogenous in past literature, and these 
effects are analyzed indirectly by assuming that increased congestion either implies increased 
travel times or decreased travel time reliability. More importantly, traffic congestion effects are 
only studied in the context of a distribution network of a single firm. In this study, we focus on 
the effects of traffic congestion on supply chain operations by modeling traffic congestion costs 
endogenously. We study two primary supply chain decisions: facility location decisions and 
supply quantity decisions. McKinnon et al. (2008) note that companies may restructure their 
distribution systems due to increased congestion. Moreover, Rao et al. (1991) mention that 
changes in facility locations are often a long-term reaction to increased traffic congestion. For 
example, Lee (2004) points out that when 7-11 Japan (SEJ), a convenience-store company, 
located stores in key locations, SEJ was subject to more dramatic effects of traffic congestion. 
Sankaran et al. (2005) also note that the effects of traffic congestion depend on the facility 
location choices of a company. Therefore, it is important to gain a better understanding of the 
effects of traffic congestion on facility location and distribution flow decisions. We study these 
factors in a competitive environment, i.e., when multiple firms compete in common markets.  
 
McKinnon (1999) presents survey results on the negative effects of traffic congestion on the 
efficiency of logistics operations. In a similar study, McKinnon et al. (2008) note that, on 
average, traffic congestion accounts for 23 percent of the total delay times in shipments of the 
companies completing the survey. This rate can be higher (up to 34 percent) in some industries 
McKinnon et al. (2008). For instance, Fernie et al. (2000) point out that traffic congestion is one 
of the most important factors affecting cost and service in grocery retailing in the UK. Sankaran 
et al. (2005) also document the results of a survey and mention the effects of traffic congestion 
on supply chain operations. Weisbrod et al. (2001) provide a systematic review of the studies at 
the intersection of traffic congestion and supply chains and discuss how traffic congestion affects 
costs and productivity. Another stream of research studies traffic congestion in JIT systems. Rao 
et al. (1991) note that JIT systems require small lot sizes, which results in increased traffic 
congestion. Moreover, their survey results indicate that companies are aware of the associated 
congestion impacts and Rao et al. (1991) propose short-term and long-term methods to mitigate 
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the effects of congestion. Moinzadeh et al. (1997) study the relationship between small lot sizes 
and traffic congestion for a company’s distribution system, with multiple retailers using a 
common congested road. Rao and Grenoble (1991) also study the effects of JIT replenishment 
and the resulting traffic congestion on distribution costs. One other field of research that 
combines traffic congestion and supply chains focuses on freight distribution. Figliozzi (2009) 
studies the effects of traffic congestion on the costs associated with commercial vehicle tours, 
while Figliozzi (2006) and Figliozzi et al. (2007) analyze freight tours in congested urban areas. 
Golob and Regan (2001; 2003) also study the impacts of traffic congestion on freight operations.  
 
The model we formulate considers facility locations and supply quantity decisions in a 
competitive environment on a congested distribution network. In particular, we study a 
competitive location game with multiple firms competing in multiple markets. The competitive 
location problem we study assumes the following settings. Competing firms are non-cooperative 
and they must simultaneously determine their facility locations (first stage decisions); then, the 
supply quantities flowing out of these facilities into each market (second stage decisions) must 
be determined. Note that a firm may locate more than one facility. Markets and possible facility 
locations are represented as vertices in a network. Firms are assumed to compete under a 
homogeneous cost structure; that is, they have identical cost parameters. For this reason, we 
assume that firms make the same facility location decisions when maximizing expected profits 
(when a unique Pure Nash Equilibrium does not exist). We assume an oligopolistic Cournot 
competition in the second stage, i.e., the total supply to a market determines the price in that 
market.  
 
The first competitive location problem was introduced by Hotelling (1929). In this study, each of 
two competing firms tries to maximize its market share by locating a single facility on a line. 
Hotelling’s problem is then extended by Teitz (1968) to the case in which firms may locate more 
than one facility. Studies exist in the literature that consider competitive location problems under 
different assumptions. The number of competing firms, the nature of strategic decisions of the 
competing firms and the competition assumptions are distinctive characteristics of different 
studies in the literature. Competitive facility location games focus mainly on the location 
decisions of competing firms and equilibrium conditions are analyzed to determine firms’ 
location decisions along with other strategic decisions, such as pricing, production levels and 
capacity planning. Eiselt and Laporte (1996), Eiselt et al. (1993) and Plastria (2001) provide 
reviews of competitive facility location problems under different assumptions studied in the 
literature.  
 
Most of the competitive location problems in the literature assume Cournot competition. Spatial 
competition of two firms with Cournot competition is studied by Labbé and Hakimi 1991). This 
study is extended to multiple firms by Sarkar et al. (1997). Both of these studies assume that 
firms locate a single facility. Pal and Sarkar (2002) consider spatial competition in a Cournot 
duopoly where the competing firms may locate more than one facility. The distinguishing 
assumption of these studies is that competing firms enter each market by supplying a positive 
quantity to each market. Rhim et al. (2003) and Sáiz and Hendrix (2008) relax this assumption 
and consider the case of free entry. The settings of the competitive location problems studied in 
Rhim et al. (2003) and Sáiz and Hendrix (2008) are similar to the settings of our problem. In 
both of these studies, the competition basis is that of Cournot and firms determine the location of 
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their single facility and the quantities to be supplied from this facility to each market, if they 
choose to enter any market. While a homogeneous cost structure is assumed by Rhim et al. 
(2003) and Sáiz and Hendrix (2008) study a heterogeneous cost structure.  
 
Our study extends the problems studied by Rhim et al. (2003) and Sáiz and Hendrix (2008) by 
allowing firms to locate more than one facility. Moreover, firms are subject to nonlinear traffic 
congestion costs. Konur and Geunes (2009) study a general competitive facility location game 
where firms are subject to nonlinear congestion costs and allowed to locate more than one 
facility. The problem we study is a special case of their problem in which we assume that supply 
firms are identical in terms of the costs they incur. Our goal is to analyze the effects of traffic 
congestion on the firms’ equilibrium facility location and supply quantity decisions. Considering 
the special case involving identical supply firms enables us to explicitly analyze and characterize 
how congestion costs affect the structure of equilibrium decisions, and to use this analysis to 
provide insights into how equilibrium solutions change in response to changes in congestion 
levels and costs. We use a two-stage solution approach similar to those in Labbé and Hakimi 
(1991), Lederer and Thisse (1990), Pal and Sarkar (2002), Rhim et al. (2003), Sáiz and Hendrix 
(2008) and Sarkar et al. (1997). First, we study the second stage decisions for any firm when the 
location choices of the firms are identical. The Pure Nash Equilibrium (PNE) concept is used in 
the analysis of a Cournot oligopoly to determine the equilibrium supply quantities. We provide 
analytical results on the effects of traffic congestion costs on the equilibrium quantities flowing 
from supply points to markets in this stage. Then, we focus on the location decisions of the firms. 
We note that firms choose identical facility locations in the case of a unique PNE location 
decision. However, for other cases, since the equilibrium concept does not characterize what 
firms will actually do, we use the maximization of expected profits as an objective, assuming 
that any location decision is equally likely for each firm. We show that a mixed strategy Nash 
Equilibrium (MSNE) implies that it is equally likely for any firm to choose any given location 
decision. Thus, when firms are homogeneous, they will end up with identical facility locations, 
and therefore, we study the optimal location decision set for the individual firm. A heuristic 
solution method to determine a good location decision for a firm is also provided. We perform 
extensive numerical studies that illustrate the effects of traffic congestion on a firm’s location 
and quantity decisions.  
 
The rest of this paper is organized as follows. In Section 2, we discuss the detailed problem 
setting and solution approach. In Section 3, we study the properties of equilibrium supply 
quantities and propose a solution algorithm, given that firms make identical facility location 
decisions. Moreover, we analyze the effects of increased traffic congestion on equilibrium supply 
quantities. Section 4 discusses the rationale behind the assumption that firms choose identical 
facility locations, and a total enumeration scheme and heuristic method are provided to 
characterize facility location decisions. In Section 5, we provide the results of extensive 
numerical studies that characterize: (i) the effects of congestion on facility location and supply 
quantity decisions, (ii) the efficiency of the heuristic method and, (iii) the impacts of accounting 
for congestion in the decision making process. Concluding remarks, a summary of the 
contributions of our study, and future research directions are noted in Section 6.  
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2. Research Approach 

We study a set of k competitive firms considering the location of facilities at m possible locations 
in order to serve customer markets at n locations. Each firm incurs transportation, traffic 
congestion and facility location costs as a result of their location and distribution volume 
decisions. More explicitly, firms are subject to linear transportation costs in the quantity shipped 
from a facility to a market and the traffic congestion cost incurred is convex in the total quantity 
shipped from a facility to a market. A fixed facility location cost exists for each location i. 
Moreover, we assume that any open facility is effectively uncapacitated and, hence, a firm will 
not open more than one facility at a given location. The notation we use throughout the text is 
summarized below. We will define additional notation as needed.  

 r:  index for firms, r ∈ R = {1, 2, …, k} 
 i:  index for locations, i ∈ I = {1, 2, …, m} 
 j:  index for markets, j ∈J = {1, 2, …, n} 
 qijr: quantity shipped from the facility of firm r at location i to market j 

 jrq• : total quantity shipped to market j by firm r, jr ijr
i I

q q•
∈

=∑  

 ijq • :  total quantity shipped from location i to market j, ij ijr
r R

q q•
∈

=∑  

 jq• • :  total quantity shipped to market j, i r ijr
r R i I

q q•
∈ ∈

= ∑∑  

 :Q  k×m×n matrix of qijr values  
 xr: m-vector representing location decisions of firm r 
 :X   m × k matrix representing location decisions 

 ( ) :j jp q• •  
price function for market j 

 ( )ij ijg q • :  traffic congestion cost function for the link from location i to market j  
 cij: transportation cost per unit of flow from location i to market j 

 fi: fixed cost of opening a facility at location i 
 fr(xr): total facility location cost for firm r  

 
We assume the unit price in each market is a linear and decreasing function of the total quantity 
of flow into the market. Explicitly, the unit price in market j, pj, is defined by the function  
 ( )j j j j jp q a b q• • • •= − ,  (1) 

where the parameters 0ja ≥  and bj > 0 represent the level of maximum demand and the price 
sensitivity in market j. We assume that the transportation cost is linear in the quantity of flow on 
link (i, j) and cij 0≥  represents a per unit transportation cost. It should be noted that cij can be 
assumed to include per-unit production costs as well. That is, a parameter vi > 0 specific to 
location i can be included within cij to account for per-unit production cost at location i. The 
function gij, which is a function of the total quantity of flow on link (i, j), determines the traffic 
congestion cost coefficient on link (i, j). In particular, we assume that  
 ( )ij ij ij ijg q qα• •=  (2) 

where 0ijα >  denotes the traffic congestion cost factor. Hence, the congestion cost incurred by a 
firm using link (i, j) increases with the total quantity of flow on the link as well as with the 
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quantity sent by the firm on that link. In particular, the congestion cost for firm r is 0ij ijr ijq qα • =  
when qijr = 0. On the other hand, when qijr > 0, the congestion cost of firm r equals 0ij ijr ijq qα • >  
and is convex and increasing in qijr when the quantities sent by other firms on the link are fixed. 
Thus, the firm’s congestion cost is a nondecreasing convex function of the quantity sent by the 
firm on the link. This choice of functional form reflects the nature of traffic congestion, as 
congestion costs increase in volume at an increasing rate. This is compatible with the note in 
Weisbrod et al. (2001), which emphasizes that companies with higher shipping levels are subject 
to a higher level of congestion related costs.  
The profit function of firm r  reads as  

 ( ) ( )r j ijr ijr ij ijr ijr ij ijr r r
j J i I r R i I j J i I j J i I r R

p q q c q q g q f
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈⎝ ⎠⎝ ⎠

Π , = − − − ,∑ ∑∑ ∑ ∑∑ ∑∑ ∑Q X x  (3) 

where the first term is the revenue gained by serving markets, the second term is the total 
transportation cost, the third term is the total traffic congestion cost, and the last term is the total 
facility location costs. Konur and Geunes (2009) define the firms’ profit function in a similar 
way, although they consider the case in which both cij and ijα  may be different for individual 
firms.  
 
The supply firms first decide where to locate facilities and then determine how much to supply 
markets from each of their facilities. Clearly, under competition, a firm’s resulting profit after 
making location and supply decisions depends on the location and supply decisions of all other 
firms. This implies a two-stage decision and associated solution approach. Stage-one decisions 
correspond to firm location decisions, while Stage-two decisions correspond to market supply 
decisions for each firm. Our solution approach first solves the Stage-two decisions for a fixed set 
of location decisions, assuming each firm chooses the same location decision vector. We will 
employ the Nash Equilibrium concept of Nash (1951) to determine the firms’ supply quantity 
decisions and provide a method to find Pure Nash Equilibrium (PNE) quantities sent from any 
location to any market by each firm.  

2.1. Stage-two Decisions: Market-Supply Game 
In this section, we study the second-stage game, which determines the firms’ supply quantity 
decisions for a given location decision. This restricted game to determine the equilibrium 
quantity decisions is referred as the Market-Supply Game. Note that, unlike the previous studies 
by Rhim et al. (2003) and Sáiz and Hendrix (2008), the firms not only compete based on price, 
but also as a result of the congestion cost functions on supply links. This Market-Supply Game is 
a non-cooperative game in which the supply firms are the players. Firms simultaneously 
determine how much to send from facilities to markets. To determine the firms’ flows, we use 
the PNE concept, i.e., no firm will be better off by altering its supply quantity decisions under 
the given location decisions.  
 
Now let us assume that the location decision for each firm, i.e., the vector xr for each r = 1, 2, …, 
k, is pre-determined. That is, X is fixed. Since fr(xr) is fixed for the given X = X0, it can be 
omitted from Equation (3) for the analysis of the Market-Supply Game. Using the notation 
introduced in the previous section and Equations (1), (2), and (3), the profit function of firm r for 
the given X = X0 reads as  
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 0( ) ( )r j j j jr ij ijr ij ijr ij
j J i I i I

a b q q c q q qα
⎡ ⎤
⎢ ⎥
⎢ ⎥• • • •⎢ ⎥∈ ∈ ∈⎣ ⎦

Π | = = − − − .∑ ∑ ∑Q X X  (4) 

The function in Equation (4) is strictly concave in each 0ijrq ≥ , as bj > 0 and 0ijα > . Note that 
qijr = 0 for all 0

rj J i I∈ , ∉ , where 0
rI  denotes the locations where firm r has facilities for the 

given X = X0. The quantity decision for any firm will depend on the quantity decisions of the 
other firms; thus, we can apply the Nash Equilibrium concept in our solution approach. A Nash 
equilibrium solution for the Market-Supply Game will satisfy the first order conditions, 

0( ) 0r ijrq∂Π | = / ∂ =Q X X , for a set of qijr values such that qijr > 0. Explicitly, for any Nash 
equilibrium solution the following equation must hold whenever qijr > 0:  
 [ ] [ ] 0j j j jr ij ij ijr ija b q q c q qα• • • •− + − − + = .  (5) 

Note that Equation (5) depends on the total quantity supplied to market j, the total quantity 
supplied by firm r to market j, the total quantity supplied from location i to market j and the 
quantity supplied from location i to market j by firm r. On the other hand, Equation (5) does not 
depend on the other market parameters or variables and, hence, the quantity decision of any firm 
for market j can be made independently from the decisions related to the other markets. That is, 
each market can be analyzed separately. Let 0( )j

r jΠ | =Q X X  denote the profit function of firm r 
at market j, where Qj denotes the vector of quantity decisions of the firms at market j for the 
given location decision X = X0. Then, it follows from Equation (4) that  
 

0 0

0( ) ( )
r r

j
r j j j jr ij ijr ij ijr ij

i I i I

p q q c q q qα• • • •
∈ ∈

Π | = = − − .∑ ∑Q X X  (6) 

In the rest of this section, we focus on the Market-Supply Game for market j, since the Stage-two 
decisions for each market can be analyzed separately. The results that hold for market j will also 
hold for the Market-Supply Game across all markets.  
 
It follows from Equation (6) that Equation (5) gives the first order equilibrium condition for 
quantities such that qijr > 0. Let ijrq∗  denote the equilibrium quantities. Our goals are then (i) to 

determine the locations and the firms such that 0ijrq∗ >  and (ii) to simultaneously solve Equation 

(5) for each 0ijrq∗ >  for the given X = X0.  
 
At this point, we assume that X0 consists of identical columns, where the rth column corresponds 
to the location decision of firm r. That is, 0

r =x x  r R∀ ∈ , where 0x  denotes any column of 0X . 
The rationale behind considering such location decisions will be explained in the following 
section when we study Stage-one decisions. This choice of 0X  enables us to determine the 
quantity decisions using an iterative scheme and to analyze the effects of traffic congestion cost 
factors on the equilibrium quantity decisions. However, the equilibrium quantity decisions for 
any given 0X  can also be solved using a variational inequality approach. See Konur and Geunes 
(2009) for an application of the variational inequality formulation to determine equilibrium 
quantity decisions for a competitive location-quantity game.  
 
Now, suppose that the location decision matrix 0X  consists of identical columns and, thus, the 
number of facilities at any candidate location is either k  or 0 for some positive k . Note that we 
do not need to consider locations where no firm has located a facility. Therefore, we only study 
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quantity decisions at supply locations with k  facilities. In the next proposition, we show that the 
quantity supplied from location i  to market j  is the same for each firm.  
 
Proposition 1. Suppose that 0X  consists of identical columns, i.e., 0

r =x x  r R∀ ∈ . Then 

ijr ijq Q k∗ ∗= /  r R∀ ∈ , where ijQ∗  denotes the total quantity flow on link ( )i j,  at equilibrium.  
 
Proof: All proofs can be found in the Appendix.   
 
Proposition 1 implies that if we know the total equilibrium quantity supplied from location i  to 
market j , denoted by ijQ∗ , we also know the quantity that each firm with a facility at location i  

supplies to market j . For the given 0X , with 0
r =x x  r R∀ ∈ , it follows from Proposition 1 that 

(i) ijr ijq Q k∗ ∗= / , (ii) ij ijq Q∗ ∗
• = , (iii) 0jr iji I

q Q k∗ ∗
• ∈

= /∑  and (iv) 0j iji I
q Q∗ ∗
• • ∈

= ∑ , where 0I  denotes 

the set of locations with k  facilities associated with 0X .  
Recall that Equation (5) gives the first order conditions for any 0ijrq∗ > ; that is, it gives the first 

order condition when 0ijQ∗ > . Substituting (i)-(iv) into Equation (5), we get  

 
0 0 0

0ij ij
ij j ij ij ij ij j ij ij ij

i I i I i I

Q Q
b Q Q b Q Q

k k
δ α δ γ γα

∗ ∗
∗ ∗ ∗ ∗

∈ ∈ ∈

⎛ ⎞ ⎛ ⎞
− + − + = − − = ,⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  (7) 

where ij j ija cδ = −  and ( 1)k kγ = + / . Note that we may have at most k m×  such first order 
conditions defined for market j . Nevertheless, the first order conditions associated with a 
location use the same equation for each firm, given by Equation (7). Therefore, we focus on 
simultaneously solving at most m  first order conditions, one for each location, defined by 
Equation (7). The next proposition provides conditions that must be satisfied by the total 
equilibrium quantity on a link ( )i j, .  
 
Proposition 2. The equilibrium quantities must satisfy the following conditions:  

( ) 0ija Q∗ > if and only if 
0

ij j ij
i I

b Qδ γ ∗

∈

> ,∑  

 ( ) 0ijb Q∗ =  if and only if 0ij j iji I
b Qδ γ ∗

∈
≤ .∑   

Proposition 2 implies that the ijδ  values are important in determining the active locations at 
market j . A location is referred to as active at a market whenever there is a positive supply from 
this location to the market. Similarly, a firm is referred as active at a market whenever there is a 
positive supply by this firm to the market. The next proposition is a direct result of Proposition 2 
and states the activeness relations between two locations.  
 
Proposition 3. Suppose that 

1 2i j i jδ δ≥  for locations 0
1 2i i I, ∈ . Then in an equilibrium solution  

( )a If
2

0i jQ∗ > , then
1

0i jQ∗ > ,  

(b)    If
1

0i jQ∗ = , then
2

0i jQ∗ = .   
Proposition 3 highlights the importance of sorting locations according to their ijδ  values which, 
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for a given market j , is equivalent to sorting supply locations based on the ijc  values. In 
particular, if we know that  locations are active at market j , these locations should be the  
locations with greatest ijδ  values (or, smallest ijc  values). Note that if there exist locations with 
identical ijδ  values, it follows from Proposition 3 that either all of these locations are active or 
none of them is active at market j . Moreover, for both of these cases, the equilibrium supply 
quantities at market j  remain unchanged regardless of the sorting order of tied values of ijδ , as 
the same first order conditions given in Equation (7) will be solved.  
 
Now let us sort locations according to their ijδ  values, and without loss of generality, let us 
assume that ( 1)ij i jδ δ +≥ . Therefore; if  locations are active at market j , these locations are 

1 2 …, , ,  with 0I≤| | , where 0I| |  denotes the cardinality of the set 0I . Then for any firm at any 
location i , i ≤  (since 0ijrq∗ >  as 0ijQ∗ > ) the following first order condition must be satisfied:  

 1 2( ) 0ij j j j j ij ijb Q Q Q Q iδ γ γα∗ ∗ ∗ ∗− + + + − = ∀ ≤ .  
In matrix notation, the first order conditions can be represented as  

 

11 1

22 2

j j jj j j

j j jj j

j

jj j j j j

b b b Q
b b Q

b
b b b Q

αδ
αδ

γ

αδ

∗⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ∗
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ∗⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+
+

= .

+

 

It follows from the above representation that we can find the ijQ∗  values easily by inverting the 
×  matrix for a given set of active locations. Note that inverting this matrix basically involves 

solving the first order conditions for locations 1 2 …, , ,  together. However, our aim is to 
determine the set of active locations and then find the equilibrium quantities. In the next 
proposition, we provide an algorithm that determines the set of active locations at a market as 
well as the total equilibrium flows from these locations. The algorithm is based on Propositions 2 
and 3.  
 
Proposition 4. Suppose that 0X  consists of identical columns, i.e., 0

r =x x  r R∀ ∈ . Then 
Algorithm 1, stated below, determines the number of the active locations and the corresponding 
equilibrium flow quantities.  
 
Algorithm 1.  
 
Given 0

r =x x  r R∀ ∈ , the number of firms, jb , ijδ  and ijα  values for market j :  
 

Step 0.  Set 0ijQ∗ =  0i I∀ ∉ . Sort the remaining locations such that location 1 has the 

greatest ijδ  value. If 1 0jδ > , set 2=  and go to Step 1; otherwise 0ijQ∗ =  
0i I∀ ∈ .  
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Step 1.  For location , find ( )
jQ  by solving the following set of equations represented 

in matrix form  

 

( )
111
( )
222

( )

jj j jj j

jj j jj

j

jj j j j j

Qb b b
Qb b

b
b b b Q

αδ
αδ

γ

αδ

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+
+

= .

+

 (8) 

 
Step 2.  If ( ) 0jQ >  and 0I<| | , set 1= +  and go to Step 1. If ( ) 0jQ >  and 0I=| | , 

stop, locations 1 2 …, , ,  are active and ( )
ij ijQ Q∗ =  0i I∀ ∈ . Else if, ( ) 0jQ ≤ , stop; 

locations 1 2 1…, , , −  are active at market j . ( 1)
ij ijQ Q∗ −=  for 1i ≤ −  and 0ijQ∗ =  

for i ≥ .  
 

We next analyze Algorithm 1, which will be helpful in characterizing the effects of the traffic 
congestion cost factor on the equilibrium flow quantities. Suppose that there are  active 
locations at market j . Consider the thw  iteration of Step 2 in Algorithm 1. Let ( )w

ijQ  be the 

tentative quantities calculated at the thw  iteration using Equation (8). (Note that ( )
ij ijQ Q∗= .) In 

the thw  iteration, we have tentative equilibrium quantities for locations 1 to w , which are the 
solutions to  
 ( ) ( ) ( ) ( )

1 2( )w w w w
ij ij ij j j j wjQ b Q Q Q i wδ γα γ− = + + + ∀ ≤ .  (9) 

It follows from Equation (9) that  
 ( ) ( ) ( )

1 1 1 2 2 2
w w w

j j j j j j wj j wjQ Q Qδ γα δ γα δ γα− = − = = − .  (10) 

Equations (9) and (10) imply that, for location s , s w≤ , in the thw  iteration  

 
1( )

1

( )w
sj ij

j j
i ijw

sj w
sj

sj j
i ij

b
Q

b

δ δ
δ

α
α

γ α
α

=

=

−
+

= .
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 (11) 

Equation (11) gives the equilibrium quantity for location s  when w = . In the next proposition, 
we show that the quantity supplied from an active location decreases as the number of active 
locations increases at each iteration of Algorithm 1, whereas the total quantity supplied to the 
market increases.  
 

Proposition 5. (a) ( ) ( 1)w w
sj sjQ Q +>  for location s , s w≤  and 1w+ ≤ . (b)

1
( ) ( 1)

1 1

w w
w w

ij ij
i i

Q Q
+

+

= =

<∑ ∑ , 

1w+ ≤ .  
 
The following subsection characterizes the effects of the traffic congestion cost factor on the 
total equilibrium quantity flow from a location to market j , as well as on the total equilibrium 
quantity supplied to market j . Proposition 5 will be used in the analysis of these effects. Our 
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goal is to understand how variation in ijα  influences the equilibrium solution.  

2.2. Impact of Variation in ijα  

In this section, we analyze the changes in the equilibrium supply quantities when the congestion 
cost factor on one of the links connecting a supply location to a market increases. Note that we 
assume the facility location decisions of the firms are fixed and identical, i.e., firms have the 
same facility locations. Suppose that locations are sorted such that location 1 has the greatest ijδ  
value. Hence, when there are  locations active in a market, these locations will be the first  
locations under Proposition 3. We first note that when there are  locations active initially, an 
increase in the traffic congestion cost factor for one of the active locations will not result in any 
of the initially active locations becoming inactive. The next proposition provides a formal proof 
of this.  
 
Proposition 6. Consider 1

sjα  and 2
sjα  such that 1 2

sj sjα α< , and suppose that locations 1 to  are 

active under the 1
sjα  value, 1 s k≤ ≤ . Then locations 1 to  are also active under the 2

sjα  value.  
 
Proposition 6 implies that when the traffic congestion cost factor for one of the initially active 
locations increases, it is possible that the total number of active locations may increase. 
Moreover, the initially active locations will continue to be active. Next, we study the cases (i) 
when the number of active locations remains the same and (ii) when the number of active 
locations increases.  
 
(i) When the number of active locations remains the same, we know that all of the initially active 
locations will remain active. That is, the set of active locations remains the same. This case also 
captures the situation when all of the locations are initially active. In this case, the quantity 
supplied from the location for which the traffic congestion cost factor increased, will decrease. 
On the other hand, the quantity supplied from the other locations will increase. Moreover, the 
total quantity supplied to the market decreases. We formalize this discussion in the next 
proposition.  
 
Proposition 7. Suppose that 1

sjα  and 2
sjα  are such that 1 2

sj sjα α< , and that locations 1 to  are 

active under 1
sjα  and 2

sjα , 1 s≤ ≤ ; that is, the number of active locations and the set of active 

locations remain the same. Then (a) 1 2
ij ijQ Q∗ ∗>  for i s=  and, 1 2

ij ijQ Q∗ ∗<  i s≠ . Moreover, (b) 

1 2

1 1
ij ij

i i

Q Q∗ ∗

= =

>∑ ∑ , where 1
ijQ ∗  and 2

ijQ ∗  denote the equilibrium quantities supplied from location i  

to market j  under the 1
sjα  and 2

sjα  values, respectively.  
 
Statement (a) of Proposition 7 implies that each firm will reduce the quantity that it supplies to 
market j  on link ( )i j,  if the set of active locations does not change when the traffic congestion 
cost factor increases on the link. On the other hand, each firm will increase the quantity it 
supplies to market j  on the other links in this case. Moreover, it follows from Statement (b) of 
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Proposition 7 that the total quantity sent to market j  by any firm will decrease. This discussion 
highlights the fact that firms will reduce their supply to market j  and, hence, increase the price 
in market j , while decreasing their transportation costs by supplying less, to balance the 
increase in their traffic congestion costs. Next we study the case when the number of active 
locations increases.  
 
(ii) When the number of active locations increases, the total quantity supplied from the location 
for which the traffic congestion cost factor increases will decrease. On the other hand, the total 
quantity supplied from the other locations that were initially active may increase or decrease. 
However, if the total quantity supplied from one of the initially active locations (for which the 
traffic congestion cost factor remains the same) increases (decreases), the total quantity supplied 
from the other initially active locations (with unchanged traffic congestion cost factors) also 
increases (decreases). The next proposition formalizes this discussion.  
 
Proposition 8. Suppose that 1

sjα  and 2
sjα  are such that 1 2

sj sjα α< , and suppose that locations 1 to 

 are active under 1
sjα , s ≤ , and locations 1 to +℘ are active under 2

sjα . Then (a) 1 2
ij ijQ Q∗ ∗>  

for i s= . Moreover, (b) if 1 2
ij ijQ Q∗ ∗<  for a location i , i s≠ , then 1 2

ij ijQ Q∗ ∗<  i∀ ≤ , i s≠  and 
1 2

1 1ij iji i
Q Q+℘∗ ∗

= =
>∑ ∑ , where 1

ijQ ∗  and 2
ijQ ∗  denote the equilibrium quantities supplied from 

location i  to market j  under 1
sjα  and 2

sjα , respectively.  
 
Proposition 8 implies that each firm will reduce the quantity it supplies to market j  on link 
( )s j,  if the number of active locations increases when the traffic congestion cost factor increases 
on link ( )s j, . On the other hand, each firm may increase or decrease the quantity it supplies to 
market j  on the other links in this case. However, the reaction of the firms will be the same for 
the quantity decisions on the other links, i.e., if firms increase (decrease) the flow on link ( )i j, , 
i s≠ , they will increase (decrease) the flow on any link ( )i j, , i s≠ . Moreover, when firms 
increase (decrease) the flow on link ( )i j, , i s≠ , the total quantity supplied to market j  and the 
total quantity supplied to market j  by any firm decreases (increases). When the total quantity 
supplied to market j  by a firm decreases, this implies that all of the firms decrease supply to 
market j , increasing the price in market j  to balance the increase in the traffic congestion 
costs. Nevertheless, when the total quantity supplied to market j  by a firm increases and the 
number of supply points increases, this illustrates how firms may choose to divert flow to market 
j  using links that are not as close to market j  but are less congested.  

 
Our discussion of Propositions 7 and 8 implies that increased congestion hampers efficient 
planning of supply chain activities, because it pushes firms to supply a market using either more 
congested links or links that are not close to the market. In Section 5, we give the results of 
extensive numerical studies to characterize the effects of increased traffic congestion on the 
facility location decisions of the firms as well as the supply quantity decisions.  
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2.3. Stage-One Decisions: Facility Locations 
In this section, we study the firms’ supply facility location decisions. We first discuss the 
rationale behind our prior assumption that all firms make identical location decisions. Then, we 
seek the best location decision of a single firm, under the assumption that it will also be the best 
location decision of the other firms.  

2.3.1. Identical location decisions 

Suppose that we are able to determine the optimal supply quantity decisions for any given 
location decision matrix 0X , which implies that we can determine the total profit, including the 
facility location costs, for any given 0X  (see Konur and Geunes, 2009). In the next proposition, 
we show that if there exists a unique PNE location decision, then each firm chooses the same 
facility locations in equilibrium.  
 
Proposition 9. Suppose that there exists a unique PNE location matrix, ∗X . Then, r

∗=x x  
r R∀ ∈ , where ∗x  denotes the column vector decision for each firm in ∗X .  

 
Proposition 9 also follows from the fact that location decisions of the firms form a multi-player 
symmetric (strongly symmetric; Brant et al., 2009) game with a finite number of strategies 
(Nash, 1951). For symmetric games, it is well known that a symmetric equilibrium exists, either 
under pure strategies or mixed strategies (Nash, 1951). Therefore, when there exists a unique 
PNE location matrix, it will be a symmetric PNE, i.e., each firm makes the same location 
decisions. Furthermore, Proposition 9 implies that when there exists a unique PNE location 
matrix, the search for an equilibrium location matrix can be restricted to location decisions such 
that each firm chooses the same facility locations. We can thus use the method described in the 
previous section to characterize the profit of each such location matrix and, hence, choose the 
best among all solutions with identical columns to determine the unique PNE.  
 
On the other hand, it is possible that multiple PNE location decisions exist, or that a PNE 
location decision does not exist. While uniqueness of PNE location decisions implies existence 
of a symmetric PNE (which is the unique PNE location matrix itself as implied by Proposition 
9), in the case of multiple PNE location decisions, it is possible that none of the equilibrium 
points under pure strategies is symmetric. Cheng et al. (2004) show that at least one PNE exists 
for multi-player symmetric games with two strategies. That is, if there exists a single location, 
the game corresponding to the location decisions of the firms has a PNE solution. We note that 
the single location case can be solved by considering 2r  solutions with each firm either locating 
or not locating a facility at the single location. It easily follows from the discussion in the 
previous section that for any such configuration, the quantity decisions of the firms with a 
facility will be identical. Moreover, Rhim et al. (2003) prove the existence of a PNE in a 
competitive facility location game in which firms are allowed to locate at most one facility, by 
noting that the game can be modeled as a congestion game under the assumption that each 
market will be supplied from a single location. It is a well-known result that congestion games 
have PNE points (Rosenthal, 1973). Nevertheless, the game we study cannot be modeled as a 
congestion game due to the fact that firms may locate more than one facility. It is noted by 
Cheng et al. (2004) that even for symmetric games with two strategies, the existence or 
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uniqueness of a symmetric PNE (i.e., when each player chooses the same strategy) is not 
guaranteed. Amir et al. (2008) show that for supermodular, doubly symmetric games, there exists 
a Pareto dominant symmetric PNE. However, the location decisions for our problem do not 
constitute a doubly symmetric game.  
 
When a symmetric PNE solution does not exist, this implies that either multiple PNE solutions 
exist or no PNE location exists. For both of these cases, as previously noted, the corresponding 
mixed strategy Nash equilibrium (MSNE) will be symmetric. Next, we study MSNE for such 
cases under the following assumptions:  
 
Assumption 1. Given the location decisions of other firms, a firm will never locate an additional 
facility if locating this facility reduces profit.  
 
Assumption 2. Given the location decisions of other firms, if locating an additional facility does 
not change the firm’s total profit, the firm will add this facility.  
 
Assumption 3. Given the location decisions of other firms, there do not exist multiple distinct 
location decisions containing an identical number of facilities that result in the same profit level 
for any firm.  
 
Note that Assumptions 1-3 imply that, given the location decisions of other firms, a firm will 
have a unique choice of location vector. In the next proposition, we show that, under 
Assumptions 1-3, a MSNE exists such that the probability of a firm choosing any particular 
location vector x  is either 0 or equal to some value ρ  such that 1 0ρ≥ > .  
 
Proposition 10. Suppose that Assumptions 1-3 hold and that no firm will choose a location 
decision that is weakly or strictly dominated. Then, there exists a mixed strategy Nash 
equilibrium with ( )rρ ρ=x  or ( ) 0rρ =x  for any location vector x , for all r R∈ , where ( )rρ x  
denotes the probability that firm r  will choose location vector x  and 1 0ρ≥ > .  
 
It follows from the proof of Proposition 10 that when there does not exist a unique symmetric 
PNE location decision, firms will assign the same probabilities to location vectors that are not 
dominated in a mixed strategy and dominated location vectors will be assigned probability 0. 
Moreover, due to the symmetry of the mixed strategy equilibrium, firms will assign the same 
probability to each particular location vector.  
 
The problem with using the equilibrium concept as a decision mechanism for location decisions 
is that it fails to explain and characterize firms’ actual decisions when multiple PNE solutions 
exist or when no PNE location decision exists. We already know from Proposition 9 that when 
the PNE is unique, all firms will choose the same locations and, hence, we can search over one 
firm’s decisions to find an equilibrium solution, as the profits of the firms will be the same when 
the location decisions are the same. Nevertheless, when multiple PNE solutions exist or when no 
PNE solution exists, we cannot characterize the firms’ actions using the PNE concept. Thus, if 
we assume that firms determine facility locations purely based on their expected profits 
(assuming that any location vector is equally likely for any firm), then since firms are 
homogeneous, they will make the same decisions. We can therefore determine firms’ location 
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decisions by choosing the best among all location matrices with identical columns. Moreover, as 
noted in Proposition 10, in the case of multiple or no PNE location solutions, when firms 
determine the probability of choosing a location vector, they will assign the same probabilities, 
and the probabilities associated with location vectors that are not weakly or strictly dominated 
are the same for each firm. Determining the best among all location matrices with identical 
columns will be equivalent to assuming that any location vector is equally likely as well, because 
a location matrix that consists of identical weakly or strictly dominated location vectors will not 
result in higher profits for any firm. Therefore, from this point on, we focus on determining the 
best location decision of a single firm, assuming that the other firms will choose the same 
locations. We note that the corresponding solution is a PNE when there exists a unique PNE 
location decision and it is the best symmetric PNE when there exist multiple symmetric PNE 
points. For both of these cases, the resulting solution will be a Subgame Perfect Nash 
equilibrium (Selten, 1975).  
 
Now suppose that either 1∗x  or 2∗x  is the best location decision for firm r . To determine which 
of these is better for firm r , we need to compare the profits of firm r  given 0 1=X X  and 

0 = 2X X , where each column of 1X  equals 1∗x  and each column of 2X  equals 2∗x . Note that we 
can find the total profit for firm r  associated with 1X  and 2X  by determining the profit from 
supplying markets using the method described in the previous section, and then subtracting the 
facility location costs associated with 1∗x  and 2∗x . A total enumeration scheme would determine 
the profit for each 0X  such that 0X  has identical columns, and pick the one with maximum 
profits. In case of alternative optimal solutions, Assumptions 1-2 can be used as a selection tool.  
 
The resulting matrix ∗X  will give the best location decision for firm r  as well as for all other 
firms. However, total enumeration requires evaluating exponentially many location decisions for 
a firm. In particular, a firm must determine the profit for 2m  location decisions, and choose the 
one with the maximum profit. As total enumeration is computationally burdensome, we next 
provide a heuristic method intended to be representative of how individual firms may approach 
simultaneous location decisions in practice. Our heuristic method first chooses the number of 
facilities to be located based on a ranking of locations derived from the problem parameters and 
then, chooses the best locations for these facilities. The comparison of the heuristic method with 
total enumeration that we later provide in Section 5 will characterize conditions under which the 
method of analyzing location decisions in two steps leads to optimal or near-optimal 
performance.  

2.3.2. Heuristic method for identifying location matrix 

Because we consider a simultaneous game in which a player may not possess all relevant 
information associated with the other players, it is impossible to provide a general 
characterization of how an individual firm will approach the decision problem (and to, therefore, 
characterize the solution that will result). In an attempt to emulate a reasonable approach that 
might be taken by an individual firm under such conditions, we have constructed a ranking-based 
heuristic approach in which potential locations are ranked in a preference order based on 
problem data. The heuristic method we provide is thus based on assigning weights to locations. 
In particular, the weight of location i  is determined by the expression  
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ω α
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= + + .∑  (12) 

The weight of location i , iω , is the sum of average transportation cost coefficients and the 
square of traffic congestion cost factors from location i  to all of the markets, plus the facility 
location cost at location i . As a result, the weight factor for a location will be lower for locations 
with low facility location costs and low average transportation and congestion costs. Therefore, a 
location with lower weight is more favorable.  
 
The heuristic method has two phases. In the first phase, a firm decides on the number of facilities 
to locate as follows. Suppose that a firm is planning to locate  facilities, m≤ . We assume that 
the locations of these  facilities will be the  locations with the lowest weights, and we 
compute the profit associated with such a location decision. We repeat this process for each 
0 m≤ ≤ , and assume that the firm chooses the number of facilities that provides the maximum 
profit. In the second phase of the heuristic method, a firm determines the best locations for the 
number of facilities determined in the first phase. Below, we provide a step-by-step description 
of the algorithm.  
 
Algorithm 2. 2-Phase Heuristic method:  
 

Phase I: Determining the number of facilities to be located  
 

Step 0. Calculate the location weights using Equation (12). Sort locations in non-
increasing order of weight. Set 0= , 0∗ =  0π ∗ =  and go to Step 1. 

   
Step 1.  Construct x  by locating facilities at locations 1 to  and determine the profit of 

any firm, π , using Algorithm 1 with 0 =X X , where each column of X  is x . 
Go to Step 2.  

 
Step 2.  If π π ∗≥ , π π∗ =  and ∗ = . If 1m≤ −  set 1= +  and Go to Step 1. If 

m= , go to Step 3.  
 
Step 3.  If 0π ∗ ≥ , π π∗ =  and ∗ ∗=  and, go to Step 4. Else, set 0π ∗ =  and 0,∗ =  

and stop.   
 
Phase II: Finding the best location decision with ∗  facilities  
 
Step 4:  Find the best location decision with ∗  facilities by enumerating the location 

decisions containing ∗  ones (locations). Return the best solution.   
 
Algorithm 2 assumes that a firm determines facility locations in two phases; first, the number of 
facilities to be located is decided and then the locations for these facilities are determined. We 
note that Algorithm 2 provides the best location decision of a firm when the firm believes that all 
other firms will utilize the same weight ranking based approach in deciding the number of 
facilities to be located.  
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In the next section, we present the results of a numerical study to analyze the effects of traffic 
congestion costs on the quantity and facility location decisions of the firms. Moreover, we 
provide numerical results on the efficiency of the heuristic method described in Algorithm 2.  

3. Findings and Applications 

Our numerical studies focus on three kinds of analysis. We first consider the effects of traffic 
congestion cost factors on the firms’ best decisions. Following this, we characterize the 
efficiency of the heuristic method provided in the previous section. We then compare the firms’ 
best decisions (i) when firms consider traffic congestion costs in decision making and (ii) when 
firms disregard traffic congestion costs in decision making.  

3.1. Analysis 1: Effects of Traffic Congestion 

Our first analysis documents the effects of traffic congestion cost on the best decisions of the 
firms. We generate data for our computational tests in the following way. We consider four 
problem classes, where each problem class differs in transportation costs, ijc , and facility 
location costs, if . For each of the classes, we use all combinations of {3,5}k ∈ , {3,5,7}n∈  and 

{3,5,7,10}m∈ , resulting in 24 combinations of the values of k , n , and m . For each of these 
combinations, we generate 10 problem instances and each problem instance is solved for 16 
different intervals of traffic congestion cost factor, ijα , starting from 0 and increasing to 8 in 
increments of 0.5. This way we can analyze the effects of increasing congestion cost on the 
facility location and supply quantity decisions of the firms. For every problem, we let 

[50 150]ja U ,∼  and [1 2]jb U ,∼ , where [ ]U l u,  denotes the uniform distribution on [ ]l u, . Table 
1 gives the distribution interval of ijc  and if  values in each problem class.  
 

Table 1. Data Intervals for Problem Classes 1-4 

 
In each problem class, we solve 240 problem instances, and each problem instance is solved 16 
times, once for each interval of ijα  values. For each problem instance, we determine the best 
location decision (using total enumeration) and the corresponding equilibrium quantity decisions 
for a single firm. We document the following average statistics over 960 problem instances (240 
in each in each Problem Class) for each interval of ijα  values in Table 2: a given firm’s number 
of facilities (# of fac.), total quantity supplied to markets (Supply Quant.), total transportation 
costs (Trans. Cost), total traffic congestion costs (Cong. Cost), total facility location costs (Loc. 
Cost) and total profit. A graph of each statistic in Table 2 is given in Figure 1. The following 
conclusions can be drawn by analysis of the statistics shown in Table 2.  
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1. The number of facilities located increases with the congestion cost parameters up to 

Interval 8. After Interval 8, it decreases. That is, firms will locate more facilities when 
congestion cost parameters increase up to a point. However, after a point, firms will 
locate fewer facilities with the increase in congestion cost parameters. Note that the 
facility location cost follows the same pattern. See Figures 1a and 1e.  

2. The total quantity supplied by a firm decreases as the congestion cost parameters 
increase. This result is parallel with Propositions 7 and 8. Total transportation cost also 
follows the same pattern. See Figures 1b and 1c.  

3. The total traffic congestion cost increases with the congestion cost parameters up to 
Interval 8. After Interval 8, it decreases. See Figure 1d.  

4. The total profit decreases as the congestion cost parameters increase. See Figure 1f.  
 
We note that the patterns observed in Table 2 were also observed within each problem class 
individually. Considering the points noted above, a firm’s reaction to an increase in congestion 
cost can be explained as follows. Up to a point, a firm will locate more facilities and supply less 
to markets, in order to maximize profit by increasing the market price and decreasing 
transportation costs to compensate for the increase in congestion costs. However, when the 
congestion costs becomes significantly high, the firm will send less supply to markets from 
fewer supply points to avoid congestion costs in order to retain profitability. Note that if 
congestion cost were to continue increasing, the firm would tend to locate fewer and fewer 
facilities, and ultimately discontinue supplying markets.  
 

Table 2. Average Statistics over Problem Classes 1-4 
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Figure 1. Patterns of Each Column in Table 2 
      Number of Facilities vs. Interval   Total Quantity vs. Interval 

 
        Transportation Cost vs. Interval  Congestion Cost vs. Interval 

  
       Facility Location Cost vs. Interval      Total Profit vs. Interval 

   

3.2. Analysis 2: Efficiency of the Heuristic Method 

We next focus on characterizing the efficiency of the heuristic method provided in the previous 
section. We generate data for our computational tests in the following way. We consider eight 
problem classes, where each problem class differs in congestion cost factors, ijα , transportation 
costs, ijc , and facility location costs, if . By considering different problem classes, we aim at 
providing a more conclusive analysis (rather than solving a specific class of problem for which 
the heuristic method is quite efficient). For each of the classes, we use all combinations of 

{3,5}k ∈ , {3,5,7}n∈  and {3,5,7,10,15}m∈ , resulting in 30 combinations of the values of k, n, 
and m. For each of these combinations, we generate 10 problem instances. For every problem, 
we let [50 150]ja U ,∼  and [1 2]jb U ,∼ . Table 3 gives the distribution range for ijα , ijc  and if  
values in each problem class.  
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Table 3. Data Ranges for Problem Classes 1-8 

 
 
In each problem class, we solve 300 problem instances and each problem instance is solved 
using total enumeration and the heuristic method stated in Algorithm 2. Table 4 compares total 
enumeration with Algorithm 2. As can be seen from Table 4, the 2-Phase heuristic method is of 
course faster than total enumeration, and the average solution obtained by the 2-Phase heuristic 
method has an average optimality gap of 2 95%. . Moreover, the 2-Phase heuristic solution 
results in more facility locations, whereas the total quantities supplied to markets are very close 
to those when using total enumeration for each problem class. In Table 5, we compare the total 
enumeration and 2-Phase heuristic method solutions for problem instances with the same number 
of potential facility locations, i.e., for problems with 3m = , 5m = , 7m = , 10m =  and 15m =  . 
We note that as the number of potential locations increases, the computation time advantage of 
the 2-Phase heuristic method increases as well. On the other hand, the optimality gap does not 
show a clear increasing or decreasing trend in the number of locations increases. Therefore, we 
believe that 2-Phase heuristic method is robust. For instance, while the optimality gap for 
problem instances with 7m =  potential facilities is smaller than the optimality gap for problem 
instances with 10m = , the optimality gap for problem instances with 15m =  is also smaller than 
the optimality gap for problem instances with 10m = . Thus, we can say that the solution quality 
of Algorithm 2 is not clearly decreasing as the problem size increases, although Algorithm 2 
becomes substantially more efficient computationally.  
 

Table 4. Comparison of Total Enumeration and 2-Phase Heuristic Method 
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Table 5. Comparison of Total Enumeration and 2-Phase Heuristic Method for Each m  

 
 
From the analysis of Tables 4 and 5, we conclude that when a firm determines its facility 
locations using a two-phase approach (such that in the first phase, the number of facilities is 
determined by sorting potential facility locations with respect to weights; Equation (12) in our 
case), the resulting solution approach is computationally efficient, and the relative performance 
as measured by the optimality gap is relatively strong. Furthermore, the number of potential 
locations does not heavily influence the optimality gap. This suggests that the strategy of 
deciding locations in two phases makes sense. This also suggests a future research direction 
beyond the scope of this paper, in which the game of the firms corresponds to a three-stage 
game. In the first stage, the number of facilities to be located is determined; then, in the second 
stage facility locations are chosen and, finally, in the third stage, the supply quantities are 
determined.  

3.3. Analysis 3: Accounting for Congestion in Decision Making 

This section compares the decisions of the firms (i) when all of the firms explicitly consider 
traffic congestion costs and (ii) when all firms disregard traffic congestion costs in their location 
and supply quantity decisions. In particular, we compare two cases: (i) when all of the firms are 
aware of congestion in the network and account for congestion costs in their decisions and (ii) 
when all of the firms are not aware of congestion in the network and exclude congestion costs in 
their decisions, but still face congestion costs after they implement their decisions. Firms in Case 
(i) will determine their quantity decisions using Algorithm 1, and determine facility location 
decisions using total enumeration. Firms in Case (ii) do not consider traffic congestion costs in 
their decisions and, hence, we cannot use Algorithm 1 directly to determine equilibrium quantity 
decisions. On the other hand, using the next proposition, we show that when firms are not aware 
of congestion, they will supply a market from the closest facility to the market, and each firm 
will supply the same quantity.  
 
Proposition 11. Suppose that 0ijα =  i I j J∀ ∈ , ∈ . Given 0X  such that 0X  consists of identical 

columns, ( 1)ijr j ijq b kδ∗ = / +  for i i∗=  and 0ijrq∗ =  for i i∗≠  r R∀ ∈ , where 0argmax { }iji I
i δ∗

∈
= .  

 
Proposition 11 provides a solution method to find the equilibrium quantities for given location 
decisions 0X  such that 0X  consists of identical columns for Case (ii). Regarding the discussion 
in the previous section, total enumeration can still be used for Case (ii) to determine the location 
decisions.  
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We generate data for our computational tests in the following way. We consider two problem 
classes, where each problem class has eight parameter distribution settings, as shown in Table 6. 
That is, for each problem class, and for each of the three parameters of interest ( ijc , if , and )ijα , 
we have two uniform distributions from which parameter values are drawn (resulting in eight 
combinations of distribution settings). For each of these eight combinations within a class, we 
use all combinations of {3,5}k ∈ , {3,5,7}n∈  and {3,5,7,10}m∈ , resulting in 24 combinations 
of the values of k , n , and m . For each of these combinations, we generate 25 problem 
instances. For every problem, we let [50 150]ja U ,∼  and [1 2]jb U ,∼ . Table 6 gives the 
distribution range for the ijα , ijc  and if  values in each data category, where iB  denotes data 
category i .  
 
We solve each problem instance for firms in Cases (i) and (ii). If the total profit of any single 
firm in Case (ii) is negative, we exclude this instance from our analysis since we assume that 
firms will stop their actions when they have negative profits. In particular, this results in more 
than 15 problem instances in each of 24 sets for each of the eight categories for Problem Classes 
1 and 2.  

Table 6. Data Categories for Problem Classes 1 and 2 

 
 
 

Table 7. Statistics of Cases (i) and (ii) for Problem Classes 1 and 2 
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Intuitively, we would expect that firms in Case (i) have higher profits since they consider traffic 
congestion in their decisions, whereas, firms in Case (ii) disregard the traffic congestion in their 
decisions but pay for congestion after their decisions are implemented. However, our numerical 
results imply that the opposite is also possible.  
 
Table 7 compares Cases (i) and (ii) for each Problem Class. For Problem Class 1, we see that the 
average total profit for a single firm in Case (ii) is higher than the average total profit of a single 
firm in Case (i), whereas, we have the opposite for Problem Class 2. This result for Problem 
Class 1 implies that firms may actually increase their profits if they do not consider traffic 
congestion in their decisions. This phenomenon can be explained as follows. For our problem, 
firms are competing on two dimensions: the price in a market and the congestion on links 
connecting supply locations and markets. For Case (ii), since the congestion cost is disregarded 
in the decision making process, firms compete only on market price. So when the impact of 
congestion cost is relatively small and when firms compete only on market price, they may 
actually end up with higher profit. Next, we provide a simple example to illustrate the 
phenomenon in which Case (ii) results in higher profit.  
 
Example 1. Consider two firms competing in a single market, market 1. There are two potential 
locations, 1 and 2 , at which the firms may locate facilities. Suppose that facility location costs 
are 0 at both locations, i.e., 1 2 0f f= = . Let 11 80c = , 21 90c = , and 11 0 25α = . , 21 0 5α = . . The 
market parameters are 1 100a =  and 1 1b = . Table 8 gives the total quantity supplied to the market 
and the corresponding total profit for a single firm for Cases (i) and (ii), when firms have 
facilities at both locations.  

Table 8. Solution for Example 1 

 
 
In both of the cases, only the facilities at location 1 supply market 1. As can be seen in Table 8, a 
firm is more profitable under Case (ii). Moreover, we note that when both firms locate facilities 
at both locations, this corresponds to a PNE location decision, since facility location costs are 0.  
 
As is clear from Example 1, disregarding congestion costs in the decision making process may 
result, in some cases, in higher profits even under a PNE solution for both the quantity and 
facility location decisions.  

4. Conclusions, Recommendations, and Suggested Research 

This paper studied facility location and supply quantity decisions for multiple firms in a 
competitive environment on a congested network. Our contributions are primarily twofold: (i) 
we determine facility location and supply quantity decisions for firms under a homogeneous cost 
structure, where the firms may locate more than one facility and are subject to nonlinear cost 
terms, and (ii) we analyze the effects of traffic congestion on facility location and quantity 
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decisions in a competitive environment.  
 
We provided a solution method to determine the PNE quantity decisions of the firms in Section 
3. Our solution method is based on determining the equilibrium total quantities sent from any 
location to any market given that the facility location decisions are the same for each firm. 
Section 4 discussed the facility location decisions of the firms. We proposed a 2-Phase heuristic 
method, together with a total enumeration scheme. As implied by our numerical studies, the 
heuristic method is an efficient method that ranks locations based on certain problem parameters 
in the first phase. The analysis of the heuristic method suggests a future research direction: firms’ 
decisions can be modeled as a three-stage game. In this game, firms first determine the number 
of facilities (first stage), then the locations of these facilities (second stage), and, finally, the 
supply quantities (third stage). The competitive location problem we studied was a non-
cooperative simultaneous entry game. Future additional research might allow for cooperation 
between competing firms. Also, studying this problem as a sequential entry game, i.e., when 
there exists a sequential order of decision making among firms, is an interesting future research 
direction.  
 
We modeled traffic congestion costs endogenously and provided analytical results on how traffic 
congestion cost affects equilibrium supply quantity decisions. Increased traffic congestion 
hinders efficient use of the distribution network as firms may choose to supply a market from 
multiple distant decentralized facilities. Moreover, our numerical studies characterize the effects 
of congestion on facility location decisions as well. In our numerical studies, we illustrate how a 
continuous increase in traffic congestion can drive firms out of markets and out of business. 
Furthermore, we highlighted a counter-intuitive result in our numerical studies. We showed that 
firms may increase profits when they ignore congestion-based competition in some cases. We 
note that this point is an important future research area. When competitors compete over more 
than one resource, e.g., market price and congestion in our case, analyzing which of these should 
be considered in competition to produce higher profit is an interesting problem.  
 
Our results document the negative effects of traffic congestion on firms. As a result, it is possible 
that firms may be willing to cooperate with government agencies to reduce the traffic congestion. 
It is even possible that firms may cooperate among each other to mitigate traffic congestion, and, 
thereby reduce the negative effects of traffic congestion, as noted by Hensher and Puckett 
(2005). Studying such traffic congestion mitigation policies, with mathematical bases, remains as 
a future research area.  
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Appendix A 

A.1. Proof of Proposition 1 

First note that for the locations where there is no facility, 0ijrq∗ =  r R∀ ∈ . Hence, we only focus 
on the locations where there are k  facilities. We prove the statement using the KKT conditions 
defined for the optimal ijrq  values. Together with 0ijrq ≥ , the KKT conditions read  

0
0
0

ij j j j jr ij ij ij ijr ijr

ijr ijr

ijr

b q b q q q u
u q

u

δ α α• • • •− − − − + = ,
= ,
≥ ,

  

where ij j ija cδ = − . Now consider any two firms 1r  and 2r . We show that 
1 2ijr ijrq q∗ ∗=  0 ,i I∀ ∈  

where 0I  denotes the locations with k  facilities for the given 0X , by considering the following 
two cases.  
 
Case I: Suppose that 

1
0ijrq∗ >  and 

2
0ijrq∗ >  0i I∀ ∈ . Then 

1ijrq∗  and 
2ijrq∗  must satisfy the first order 

conditions, i.e., 
1 2

0ijr ijru u= =  0i I∀ ∈ . Without loss of generality, we assume that 
0 1 2 3I { … s}= , , , ,  such that s m≤ . The first order conditions, then, read  

1 1

2 2

0

0

( 1) 0

( 2) 0
ij j j j jr ij ij ij ijr

ij j j j jr ij ij ij ijr

b q b q q q i I

b q b q q q i I

δ α α

δ α α

∗ ∗ ∗ ∗
• • • •

∗ ∗ ∗ ∗
• • • •

− − − − = ∀ ∈ ,

− − − − = ∀ ∈ .

a

a
  

It follows from ( 1)a  and ( 2)a  that  

1 1 2 2

01 2 2 2 1 2

0

0

( 1)

( 2) ( ) ( ) ( )
j jr ij ijr j jr ij ijr

zj zjr zjr j jr jr j ijr ijri I

b q q b q q i I

q q b q q b q q z I

α α

α

∗ ∗ ∗ ∗
• •

∗ ∗ ∗ ∗ ∗ ∗
• • ∈

+ = + ∀ ∈ ,

− = − − = − − ∀ ∈ .∑
b

b
  

Subtracting ( 1)b  for location 2 from ( 1)b  for location 1, we get  

1 1 2 21 1 2 2 1 1 2 2( ) j jr j jr j jr j jrq q q qα α α α∗ ∗ ∗ ∗− = − .c   
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It follows from ( )c  that 
1 2 1 21 1 1 2 2 2( ) ( )j jr jr j jr jrq q q qα α∗ ∗ ∗ ∗− = − . Following similar argument, 

subtracting ( 1)b  for location 1i +  from expression ( 1)b  for location i , 1i s≤ − , we get  

1 2 1 2 1 2 1 21 1 1 2 2 2 3 3 3( ) ( ) ( ) ( ) ( )j jr jr j jr jr j jr jr sj sjr sjrq q q q q q … q qα α α α∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗− = − = − = = − .d   
Considering ( )d , ( 2)b  can be written as  

01 2 1 2

2( ) ( ) ( )zj zjr zjr j ij zjr zjri I
q q b q qα α∗ ∗ ∗ ∗

∈
− = − − .∑e   

Since 0ijα > , expression ( )e  is only satisfied when 
1 2zjr zjrq q∗ ∗=  for any location 0z I∈ . Thus, it 

follows that 
1 2ijr jrq q∗ ∗=  0i I∀ ∈ .  

 
Case II: Suppose that 

1
0ijrq∗ =  for locations 

1

0 0
ri I I∈ ⊂  and 

2
0ijrq∗ =  for locations 

2

0 0
ri I I∈ ⊂ . We 

consider the following three subcases of Case II.  
 
Subcase I: 

1 2

0 0 0 0
r r rI I I I= = ⊂ , i.e., 

1 2
0ijr ijrq q∗ ∗= =  for locations 0 0

ri I I∈ ⊂ . For locations 0
ri I∉ , 

that is, for locations 0 0
ri I \ I∈ , we have 

1
0ijrq∗ >  and 

2
0ijrq∗ > . Thus, Subcase I reduces to Case I 

with 0 0
rI \ I  instead of 0I , which means we have 

1 2ijr ijrq q∗ ∗=  for locations 0 0
ri I \ I∈ . Thus, for 

Subcase I, we have 
1 2ijr ijrq q∗ ∗=  0i I∀ ∈ .  

 
Subcase II: 

1 2

0 0
r rI I≠  and either 

1

0
rI =∅  or 

2

0
rI =∅ . Without loss of generality, suppose that 

2

0
rI =∅ .  

We first consider Situation (i): 
1

0 0
rI I= . Situation (i) implies that 

1
0ijrq∗ =  0i I∀ ∈ , thus, 

1

* 0jrq• = . 

Now consider any location 0z I∈  and suppose that 
2

* 0zjrq > . It follows from the KKT conditions 

that 
2

0zjru = . Moreover, from the KKT conditions for 
1

*
zjrq  and 

2

*
zjrq , we have  

( )
( )

1

2 2

* *

* * * *

1 0

2 0
zj j j zj zj zjr

zj j j j jr zj zj zj ijr

b q a q u

b q b q a q a q

δ

δ
• • •

• • • •

− − + =

− − − − =

f

f
  

It follows from ( )1f  and ( )2f  that 
1 2 2

* * *
zjr j jr zj zj zj ijru b q a q a q• •− = + + , which implies  

2 2
( ) 0j jr zj zj zj zjrb q q qα α∗ ∗ ∗

• •+ + = .g   

since 
1

0zjru ≥ , 0zjα >  and 0jb > . Moreover, since 
2

0ijrq∗ ≥ , ( )g  is only satisfied when 

2 2
0jr zj zjrq q q∗ ∗ ∗

• •= = = . Therefore, we have a contradiction with 
2

0zjrq∗ > , thus, 
1 2

0zjr zjrq q∗ ∗= =  for 

any location 0z I∈  for Situation (i), i.e., 
1 2ijr jrq q∗ ∗=  0i I∀ ∈ .  

 
Now we consider Situation (ii): 

1

0 0
rI I⊂ . Situation (ii) implies that there is at least one location, 

say location t , 
1

0 0
rt I \ I∈  such that 

1
0tjrq∗ >  and 

2
0tjrq∗ > . We show by contradiction that 

2
0ijrq∗ =  

1

0
ri I∀ ∈ . Suppose that 

2
0zjrq∗ >  for any location 

1

0
rz I∈ . It follows from the KKT conditions that 

2
0zjru = . Moreover, from the KKT conditions for 

1zjrq∗  and 
2zjrq∗ , we have  
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1 1

2 2

( 1) 0

( 2) 0
zj j j j jr zj zj zjr

zj j j j jr zj zj zj ijr

b q b q q u

b q b q q q

δ α

δ α α

∗ ∗ ∗
• • • •

∗ ∗ ∗ ∗
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− − − − = .

h

h
  

It follows from ( 1)h  and ( 2)h  that 
1 1 2 2j jr zjr j jr zj ijrb q u b q qα∗ ∗ ∗

• •− = + . Since 
1

0zjru ≥ , 0zjα >  and 

2
0zjrq∗ > , it implies that  

1 2
( ) j jr j jrb q b q∗ ∗

• •> .k   

Now consider any location 
1

0 0
rt I \ I∈  such that 

1
0tjrq∗ >  and 

2
0tjrq∗ > . Then it follows from KKT 

conditions that 
1 2

0tjr tjru u= =  and 
1 1 2 2j jr tj tjr j jr tj tjrb q q b q qα α∗ ∗ ∗ ∗

• •+ = + . Since 
1 2

,j jr j jrb q b q∗ ∗
• •>  we have 

1 2tjr tjrq q∗ ∗<  for any location 
1

0 0
rt I \ I∈ . Thus, it follows that  

0 0 0 01 21 1
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Moreover, since 
1

0zjrq∗ =  and 
2

0zjrq∗ >  for any location 
1

0
rz I∈ , we have  

0 01 21 1
( )

r r
tjr tjrt I t I

q q∗ ∗
∈ ∈
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Inequalities ( )l  and ( )m  together imply that 
1 2j jr j jrb q b q∗ ∗

• •< , which is contradiction with 

inequality ( )k . Thus, we should have 
1 2

0zjr zjrq q∗ ∗= =  for any location 
1

0
rz I∈ . For other locations, 

i.e., any location 
1

0 0
ri I \ I∈ , we have 

1
0ijrq∗ >  and 

2
0ijrq∗ > . Since, we know 

1 2
0zjr zjrq q∗ ∗= =  for any 

location 
1

0
rz I∈ , we can ignore such locations. Then, Situation (ii) reduces to Case I with 0 0

rI \ I  

instead of 0I , which means we have 
1 2ijr ijrq q∗ ∗=  for locations 0 0

ri I \ I∈ . Thus, 
1 2ijr ijrq q∗ ∗=  0i I∀ ∈  

for Situation (ii).  
 
Situations (i) and (ii) together imply that 

1 2ijr ijrq q∗ ∗=  0i I∀ ∈  for Subcase II.  
 
Subcase III: 

1

0
rI ≠∅ , 

2

0
rI ≠∅  and 

1 2

0 0
r rI I≠ . First note that for any location 

1 2

0 0
r ri I I∈ ∩ , we have 

1 2
0ijr ijrq q∗ ∗= = , thus, we can disregard such locations and only study the situation when 

1

0
rI ≠∅ , 
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0
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1
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2 1

00ijr rq i I∗ > ∀ ∈ ,   

1
( 2) 0ijrq∗ >n and 

2 2

00ijr rq i I∗ = ∀ ∈ .   
We now show by contradiction that conditions ( 1)n  and ( 1)n  cannot be satisfied at the same 
time. Consider any location 

1

0
rz I∈ , that is, 

1
0zjrq∗ =  and 

2
0zjrq∗ > . It follows from the KKT 

conditions that 
2

0zjru =  and (i) 
1 1 2 2j jr zjr j jr zj zjrb q u b q qα∗ ∗ ∗

• •− = + , which means that 
1 2j jr j jrb q b q∗ ∗

• •>  as 

2
0zjru ≥ , 0zjα >  and 

2
0zjrq∗ > . Now consider any location 

2

0
rt I∈ , that is, 

1
0tjrq∗ >  and 

2
0tjrq∗ = . It 

follows from the KKT conditions that 
2

0tjru =  and (ii) 
1 1 2 2j jr tj tjr j jr zjrb q q b q uα∗ ∗ ∗

• •+ = − , which 

means that 
1 2j jr j jrb q b q∗ ∗

• •<  as 
1

0tjru ≥ , 0tjα >  and 
1

0tjrq∗ > . (i) and (ii) establishes a contradiction. 
That is, we cannot satisfy the conditions ( 1)n  and ( 1)n  at the same time. Without loss of 
generality, suppose that we do not have condition ( 1)n , i.e., 

1
0ijrq∗ =  and 

2
0ijrq∗ =  

1

0
ri I∀ ∈ . Hence, 
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we can disregard any location 
1

0
ri I∈ . Then, Subcase III reduces to Subcase II. Thus, 

1 2ijr ijrq q∗ ∗=  
0i I∀ ∈  for Subcase III. Subcases I-III captures all of the possibilities of Case II. Therefore, we 

have 
1 2ijr ijrq q∗ ∗=  0i I∀ ∈ . Cases I and II imply that 

1 2ijr ijrq q∗ ∗=  0i I∀ ∈  for any two firms 1r  and 2r . 

Thus, we have shown that ijrq∗  is the same for all of the firms. Now, letting ijQ∗  denote the total 

equilibrium quantity flow on the link ( )i j, , since there exist k  firms at any location 0i I∈ , it 
follows that ijr ijq Q k∗ ∗= / .  

A.2. Proof of Proposition 2 

Considering Proposition 1 and Equation(7), the KKT conditions for any firm at location i , 
0 ,i I∈  can be written as follows:  

0 0

0
0

ij j ij ij ij ii I

i ij

i

b Q Q u

u Q
u

δ γ α∗ ∗
∈

∗

− − + = ,

= ,
≥ .

∑
  

We first prove Statement (a). Suppose 0ijQ∗ > , then it implies that 0iu = , hence, we have 

0ij j ij ij iji I
b Q Qδ γ α∗ ∗

∈
= +∑ . Since 0ij ijQα ∗ >  as 0ijα >  and 0ijQ∗ > , it follows that 

0ij j iji I
b Qδ γ ∗

∈
> ∑ . Now suppose that 0ij j iji I

b Qδ γ ∗
∈

> ∑  and 0ijQ∗ = , then it implies that 

0 0i j ij iji I
u b Qγ δ∗

∈
= − <∑  which is a contradiction since 0iu ≥ . Hence, 0ijQ∗ > . We now prove 

Statement (b). Suppose 0ijQ∗ =  and 0ij j iji I
b Qδ γ ∗

∈
> ∑ , then it implies that 

0 0i j ij iji I
u b Qγ δ∗

∈
= − <∑  which is a contradiction since 0iu ≥ . Hence, 0ij j iji I

b Qδ γ ∗
∈

≤ ∑ . Now 

suppose that 0ij j iji I
b Qδ γ ∗

∈
≤ ∑  and 0ijQ∗ > , then it implies that 0iu = , hence, we have 

0 0ij j ij ij iji I
b Q Qδ γ α∗ ∗

∈
− = >∑ , which is a contradiction since 0ijα > .  

A.3. Proof of Proposition 3 

Suppose that 
1 2i j i jδ δ≥  for locations 0

1 2i i I, ∈ . Now suppose 
2

0i jQ∗ > . Then it follows from 

Proposition 2 that 02i j j iji I
b Qδ γ ∗

∈
> ∑ . This implies that 01i j j iji I

b Qδ γ ∗
∈

> ∑ . Thus, it follows from 

Proposition 2 that 
1

0i jQ∗ > , which proves Statement (a). Now suppose 
1

0i jQ∗ = . Then it follows 

from Proposition 2 that 01i j j iji I
b Qδ γ ∗

∈
≤ ∑ . This implies that 02i j j iji I

b Qδ γ ∗
∈

≤ ∑ . Thus, it follows 

from Proposition 2 that 
2

0i jQ∗ = , which proves Statement (b).  

A.4. Proof of Proposition 4 

When Algorithm 1 stops at ( 1)th−  iteration (an iteration refers to an execution of Step 2), it 
means that ( ) 0jQ < . We now show that if we continue the algorithm one step further, that is, if 

we assume that first 1+  locations are active, we should have ( 1)
1 0Q +
+ < . Hence, this means that 
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1+  locations cannot be active. Moreover, since ( ) 0jQ < ,  locations cannot be active. Now 

suppose that ( ) 0jQ < . Note that ( )
jQ  is determined by the solution of the Equation (8), of which 

solution should satisfy (i) ( ) ( ) ( ) ( )
1 2( )ij ij ij j j j jQ b Q Q Q iδ γα γ− = + + + ∀ ≤  and (ii) 

( ) ( ) ( )
1 1 1 2 2 2j j j j j j j j jQ Q Qδ γα δ γα δ γα− = − = = − . It follows from (i) and (ii) that  

 
1( )

1

( )j ij
j j

i ij
j

j
j j

i ij

b
Q

b

δ δ
δ

α
α

γ α
α

=

=

−
+

= ,
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 

which means, if ( ) 0jQ < , then ( )

1
0j ij

ijj j i
b δ δ

αδ −

=
+ <∑ . Similarly,  

 

( 1)
( 1)

( 1)
1( 1)

( 1) 1
( 1)

( 1)
1

( )j ij
j j

i ij
j

j
j j

i ij

b
Q

b

δ δ
δ

α
α

γ α
α

+
+

+
=+

+ +
+

+
=

−
+

= .
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
 

Now suppose that ( 1)
( 1) 0jQ +
+ > , then ( 1) ( 1)( 1) ( ) ( )

( 1) ( 1)1 1
0j ij j ij

ij ijj j j ji i
b bδ δ δ δ

α αδ δ+ ++ − −
+ += =

+ = + >∑ ∑ . On 

the other hand, ( 1)( ) ( )
( 1) 1 1

j ij j ij

ij ijj j j ji i
b bδ δ δ δ

α αδ δ+ − −
+ = =

+ < +∑ ∑  as ( 1)δ δ+ < , which implies 
( 1)( 1) ( )

( 1) 1
0j ij

ijj j i
b δ δ

αδ ++ −
+ =

+ <∑ . This is a contradiction, thus, ( 1)
( 1) 0jQ +
+ < .  

A.5. Proof of Proposition 5 

Suppose that ( ) ( 1)w w
sj sjQ Q +≤  for any s w≤ < . By Equation (11) this means  

 

( 1)

1 1 ( 1)

1 1 ( 1)

( ) ( ) ( )w w
sj ij sj ij sj w j

sj j sj j j
i iij ij m j

w w
sj sj sj

sj j sj j j
i iij ij w

b b b

b b b

δ δ δ δ δ δ
δ δ

α α α
α α α

α α
α α α

+

= = +

= = +

− − −
+ + +

≤
+ + +

∑ ∑

∑ ∑
 

It follows from the above inequality that  

 ( 1)
sj sj sj

w j sj sj
sj sj

A B A
B B

α δ δ
δ δ α

α α+

− + +
≤ = −

+ +
 

where 
1

( )w
sj ij

j
i ij

A b
δ δ
α=

−
= ∑  and 

1

w
sj

j
i ij

B b
α
α=

= ∑ . Thus, considering Equation (11), the above 

inequality reads as  
 ( )

( 1)
w

w j sj sj sjQδ δ γα+ ≤ − .  
Equation (9) implies that the above inequality can be written as 

( ) ( ) ( )
( 1) 1 2( )w w w
w j j j j wjb Q Q Qδ γ+ ≤ + + + . Furthermore, it follows from Equation (9), when 
( ) ( 1)w w
sj sjQ Q +≤ , we have ( ) ( 1)

1 1

w ww w
j ij j iji i

b Q b Qγ γ +
= =

≥∑ ∑ . This implies that 
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( 1) ( 1) ( 1)
( 1) 1 2( )w w w
w j j j j wjb Q Q Qδ γ + + +
+ ≤ + + + . We can write the last inequality as 

( 1) ( 1) ( 1) ( 1) ( 1)
( 1) 1 2 ( 1) ( 1)( )w w w w w
w j j j j wj w j j w jb Q Q Q Q b Qδ γ γ+ + + + +
+ + +≤ + + + + − . Moreover, from Equation (9), we 

have that ( 1) ( 1) ( 1) ( 1) ( 1)
1 2 ( 1) ( 1) ( 1) ( 1)( )w w w w w

j j j wj w j w j w j w jb Q Q Q Q Qγ δ γα+ + + + +
+ + + ++ + + + = − . Thus, we have 

( 1) ( 1)
( 1) ( 1) ( 1) ( 1) ( 1)

w w
w j w j w j w j j w jQ b Qδ δ γα γ+ +
+ + + + +≤ − − , which means ( 1)

( 1) ( 1)( ) 0w
w j j w jb Qγα γ +
+ ++ ≤ , which is a 

contradiction since at the ( 1)thw+  iteration of the algorithm we check that ( 1)
( 1) 0w
w jQ +
+ >  and then 

define ( 1)w
sjQ +  values. This contradiction proves Statement (a). Statement (b) is a direct result of 

Statement (a) and Equation (9).  

A.6. Proof of Proposition 6 

We first show that 1( ) 2( )
zj zjQ Q<  for location z ≤ , z s≠ , where 1( )

zjQ  and 2( )
zjQ  represents the 

quantities at the th  iteration of Algorithm 1 under 1
sjα  and 2

sjα  values, respectively. Suppose that 
1( ) 2( )
zj zjQ Q≥ . By Equation (11) this means  

 
1 2

1 1

1 2
1 1

( ) ( ) ( ) ( )zj ij zj sj zj ij zj sj
zj j j zj j j

i i s i i sij sj ij sj

zj zj zj zj
zj j j zj j j

i i s i i sij sj ij sj

b b b b

b b b b

δ δ δ δ δ δ δ δ
δ δ

α α α α
α α α α

α α
α α α α

= , ≠ = , ≠

= , ≠ = , ≠

− − − −
+ + + +

≥ .
+ + + +

∑ ∑

∑ ∑
 

After simplifications, the above inequality implies that 0sjδ ≤ , which is a contradiction since 

location s  is assumed to be active initially. This contradiction establishes that 1( ) 2( )
zj zjQ Q< . 

Hence, as 1( ) 0zjQ > , we have 2( ) 0zjQ > , i.e., location z  is still active. Moreover, considering 

Equation (9), 1( ) 2( )
zj zjQ Q<  implies that 1( ) 2( )

1 1ij iji i
Q Q

= =
>∑ ∑ . Since, 1( )

1sj j iji
b Qδ γ

=
> ∑  we have 

2( )
1sj j iji

b Qδ γ
=

> ∑ , i.e., we have 2( ) 0sjQ >  and location s  is still active.  

A.7. Proof of Proposition 7 

Since the number of active locations and the set of active locations remain the same, 1 1( )
ij ijQ Q∗ =  

and 2 2( )
ij ijQ Q∗ = . Now it directly follows from Equation (11) that 1 2

ij ijQ Q∗ ∗>  for i s=  and, it 

follows from the proof of Proposition 6 that 1 2
ij ijQ Q∗ ∗<  i s≠ . This completes the proof of 

Statement (a). Statement (b) is a direct result of Equation (9) and Statement (a).  

A.8. Proof of Proposition 8 

Note that, 1 1( )
ij ijQ Q∗ =  and 2 2( )

ij ijQ Q∗ +℘= . We know from Proposition 7, that 1( ) 2( )
sj sjQ Q> . 

Moreover, we know from Proposition 5 that 2( ) 2( 1)
sj sjQ Q +> . Thus it follows that 1( ) 2( ) ,sj sjQ Q +℘>  

which proves Statement (a). Statement (b) directly follows from Equation (9). In particular, 
suppose 1 2

tj tjQ Q∗ ∗<  for location t , t k≤ , t s≠ . Then it follows from Equation (9) that 
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1 2
1 1ij iji i
Q Q+℘∗ ∗

= =
>∑ ∑ . Then it again follows from Equation (9) that 1 2

ij ijQ Q∗ ∗<  for any location i , 
i k≤ , i s≠ . This completes the proof of Statement (b).  

A.9. Proof of Proposition 9 

Suppose that ∗X  is the unique PNE location decision such that 
1 2r r≠x x  for any two firms 1r  and 

2r . Then there exists at least one location, say location i , such that firm 1r  does not have a 
facility while firm 2r  has a facility at location i , that is, 

1
1irx∗ =  and 

2
0irx∗ = . Now, if we make 

1
0irx∗ =  and 

2
1irx∗ =  in ∗X  and construct ∗∗X , then ∗∗X  is also a PNE location decision since 

firms are homogeneous with respect to transportation, traffic congestion and facility location 
costs. This contradicts that ∗X  is the unique PNE location decision.  

A.10. Proof of Proposition 10 

We first note that, the location decisions of the firms corresponds to a symmetric game. It is well 
known that for symmetric games, there exist a symmetric MSNE in cases of multiple equilibria 
or there does not exist a PNE. Symmetry of MSNE means that the probability of choosing a 
specific location decision is the same for each firm, hence, if we know the probability assigned to 
location vector x  by a firm, we know the probabilities assigned by each firm at equilibrium. 
Now, let us focus on a single firm and consider any location vector .x  Suppose Assumptions 1-3 
hold. To capture the preferences in Assumptions 1 and 2, we formulate utility function of a firm 
and use this function as the firm’s objective. We characterize the utility function of firm r , given 
the location decisions of all other firms as a function of rx  as follows  

if such that ( ( ) ) ( ( ) )
( ) if such that ( ( ) ) ( ( ) ) and

( ( ) ) otherwise

r r r r

r r r r r r r

r r r

M
Mμ

∗ ∗

∗ ∗

∗

⎧− ∃ Π , > Π , ,
⎪= − ∃ Π , = Π , | |>| |,⎨
⎪Π , ,⎩

x Q x x Q x x
x x Q x x Q x x x x

Q x x
 (13) 

where M →∞ , ( ( ) )r r r
∗Π ,Q x x  denotes the total profit, including facility location costs, of firm 

r  when rx  is the location vector, and | |x  denotes the number of facilities located under location 
vector x . Note that, the purpose of formulating a utility function as in Equation 13 and letting 
M →∞  is just to reflect Assumptions 1 and 2 mathematically. Now given that any firm uses 
Equation (13) as an objective, we focus on determining the probability assigned to location 
vector x  by any firm, say firm 1r , using the utilities of any other firm, say firm 2,r  i.e., we 
compare two firms. Suppose there are T  possible location vectors and firm 1r  assigns probability 

1r tρ  to location vector t T≤ . Now let us focus on utility matrix of firm 2r , say A. Due to 
Equation (13), each row of A  consists of 1 nonnegative and 1t −  of M−  values. We consider 
two cases:  
 
Case I: Each column on A has 1 nonnegative value. In this case, no strategy is weakly or strictly 
dominated, hence, 

1
0r tρ >  0 t T∀ ≤ ≤ . Then, we should have 

1 1 1 1
(1 ) (1 )r t r t r z r za M b Mρ ρ ρ ρ− − = − − , where 0a >  and 0b >  for any t  and z , 1 t T≤ ≤  and 
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1 z T≤ ≤ . Then it follows that 1

1

r t

r z

a M
b M

ρ
ρ

+
+= . Then 1

1
lim 1r t

r zM
ρ
ρ→∞ = , i.e., 

1 1r t r zρ ρ=  for any 1 t T≤ ≤  

and 1 z T≤ ≤ . Moreover, since there are finite number of strategies for any firm, 
1 1

0r t r zρ ρ= > . 
Letting ρ  denote this probability, we have 

1
( )rρ ρ=x  for any location vector x , as M →∞ . 

Then it easily follows from the symmetry of the MSNE, ( )rρ ρ=x  for any firm r R∈ .  
 
Case II: There are columns with no nonnegative values. In this case, the location vectors 
corresponding to the columns with nonnegative values weakly or strictly dominates the location 
vectors corresponding to the columns without nonnegative values. Hence, we can assign 
probability 0 to the columns without nonnegative values. For the remaining columns, then, Case 
II reduces to Case I. We note that a weakly or strictly dominated strategy, i.e., a location vector, 
when utility function is used as an objective, is also weakly or strictly dominated when the profit 
function is used as an objective by the firms. It follows from Cases I and II that any firm will 
assign probability 0 to weakly or strictly dominated location vectors and any firm will assign 
probability ρ  to any other location vector as M →∞ .  

A.11. Proof of Proposition 11 

We first show that any firm r  will supply market j  from a single location. Considering 
Equation (5) when 0ijα =  i I j J∀ ∈ , ∈ , we have (a) 0ij j j j jrb q b qδ • • •− − = . Now, if we assume 
that firm r  supplies market j  from two locations, we see that expression (a) for these two 
locations will imply that jr jrq q• •≠ , which is a contradiction. This further implies that (b) 

jr i jr
q q ∗• =  for some i∗  0i I∗ ∈ . Next, we show that 0 { }iji I

i argmax δ∗
∈

= . The profit of firm r  is 

(c) ( )j ij ijrp c q∗ − , where the jp∗  is the equilibrium market price. (c) is maximized when 

0 iji I
i argmax { }δ∗

∈
= . Up to now, we have shown that, any firm will supply market j  from a 

single location and this location is the closest one to market j . Then, it follows from expression 
(a) that 

1 2i jr i jr
q q∗ ∗
∗ ∗=  for any two firms 1r  and 2r . Moreover, it follows from (a) and (b) that 

( 1)ijr j ijq b kδ∗ = / + .  
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APPENDIX B: Heterogeneous Cost Case 
 

Abstract 

We study a set of competitive firms considering the location of uncapacitated facilities at a set of 
candidate locations in order to serve a set of markets. Each firm incurs firm-specific (linear) 
transportation costs, as well as convex congestion and fixed location costs as a result of location 
and distribution volume decisions. The unit price in each market is a linear decreasing function 
of the total amount shipped to the market by all firms; that is, we consider an oligopolistic 
Cournot game and analyze the two-stage Nash Equilibrium. This problem is referred to as the 
location-supply game, or competitive location game, and we first study the firms’ market-supply 
decisions for given facility locations, i.e., the game’s second stage. We formulate the problem of 
finding the equilibrium supply quantities as a variational inequality problem and provide a 
solution algorithm. Then we focus on the location decisions, i.e., the game’s first stage. We 
provide rules to obtain a dominant location matrix, and use these rules in a heuristic solution 
approach to search for an equilibrium location matrix. Numerical results on the efficiency of the 
heuristic method are documented. 
  

B.1. Introduction and Literature Review 

Facility location problems have been extensively studied in the literature. Most of the past 
operations research studies on facility location theory focus on formulating a single decision 
maker’s problem in the absence of competitive factors. This stream of research is discussed in 
the facility location books by Drezner [4] and Drezner and Hamacher [5], and the review papers 
by Hale and Moberg [10], Owen and Daskin [29], and Tansel et al. [41], as well as the references 
contained therein. As noted by Plastria [31], an assumption of no competition is often 
impractical. Rhim et al. [34] also observe that location competition is an important factor in 
competitive supply chains. As a result, another stream of research focuses on facility location 
problems under competition. The problems studied within this research stream comprise the 
fundamentals of competitive location theory. In this problem class, firms’ location decisions 
(along with other strategic decisions, such as pricing decisions, supply quantity decisions, or 
capacity decisions) are studied by applying competitive equilibrium tools and concepts.  
 
The classical study of Hotelling [17] introduces the first competitive location problem. In this 
study, two firms compete in a market and each wishes to maximize its market share under a 
demand inelasticity assumption. Smithies [40] considers the same problem with demand 
elasticity. Teitz [42] extends Hotelling’s problem by allowing firms to locate more than one 
facility. Following these basic studies, competitive location problems have been studied under 
different settings in the literature. These settings differ in their assumptions on the number of 
competing firms (two firms versus more general multiple firm problems), the number of strategic 
decisions (facility locations, product pricing, supply quantities and facility capacities), and the 
nature of the competition and strategic game (sequential facility location decisions, simultaneous 
location decisions, and decisions when facilities already exist at some locations). The reader may 
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refer to Eiselt and Laporte [6], Eiselt et al. [7] and Plastria [31] for reviews of competitive 
facility location problems under different assumptions.  
 
The problem we study in this paper assumes competition between multiple firms supplying a 
single product to multiple markets. Each firm must determine its supply facility locations and the 
quantities to be supplied from each facility to every market. Firms are non-cooperative and must 
make simultaneous decisions. We assume that potential facility locations and markets are located 
on finite number of vertices of a network. The competition base is that of Cournot, i.e., the price 
in a market is determined by the total quantity supplied to the market. Labbé and Hakimi [22] 
study spatial competition in a Cournot duopoly setting with multiple markets. Sarkar et al. [38] 
extend the problem to a Cournot oligopoly. Pal and Sarkar [30] extend spatial competition in a 
Cournot duopoly setting by allowing competing firms to locate more than one facility. In these 
studies, the underlying assumptions imply that each firm is active in every market, i.e., there is a 
positive supply from each firm to every market. This assumption is then relaxed by Rhim et al. 
[34] and Sáiz and Hendrix [36] to capture the concept of free market entry. In both of these 
studies, Cournot competition exists and firms choose the location of their single facility and the 
quantity they will supply from this facility to each market, where markets and potential facility 
locations are located on the vertices of a network. We note that defining potential facility 
locations as vertices of a network is more practical and parallels the results of Labbé and Hakimi 
[22], Lederer and Thisse [23] and Sarkar et al. [38], which state that equilibrium facility 
locations tend to be on the vertices of an underlying network under spatial competition. In these 
studies, the price in a market is a linear and decreasing function of the total quantity supplied to 
the market, and firms are subject to linear transportation and production costs as well as fixed 
facility location costs. While Rhim et al. [34] assume a homogeneous cost structure, i.e, 
transportation, production and facility location costs are location specific, Sáiz and Hendrix [36] 
consider a heterogeneous cost structure, i.e., transportation, production and facility location costs 
are both location and firm specific. Moreover, Rhim et al. [34] consider the capacity of facilities 
as a strategic decision of any firm as well.  
 
The problem we consider in this paper applies similar assumptions as those of Rhim et al. [34] 
and Sáiz and Hendrix [36]. However, we allow each firm to locate more than one facility, and 
firms are subject to firm-specific nonlinear traffic congestion costs, along with firm-specific 
linear transportation and fixed facility location costs. We use a two-stage solution approach as in 
[22], [23], [30], [34], [36] and [38]: first, Pure Nash Equilibrium (PNE) supply quantities are 
determined for given facility locations (the stage-two game) and these are then used to determine 
equilibrium facility locations (the stage-one game). That is, backward induction is used and a 
Subgame Perfect Nash equilibrium set of locations is found, if one exists. However, due to the 
complexity of each firm’s profit function, it is not possible to use a simple method that solves the 
first order equilibrium conditions to determine the PNE supply quantities, as in [34] and [36]. 
Hence, we use a variational inequality approach. Gabay and Moulin [9] suggest that variational 
inequalities can be used to determine equilibrium solutions in non-cooperative games. One may 
refer to [8], [13] and [18] for an introduction to variational inequalities, solution approaches and 
the problems studied in variational inequality theory. Applications of variational inequalities on 
equilibrium problems can be seen in [19] and [26]. Dong et al. [3] and Nagurney et al. [27] 
provide representative examples of variational inequality formulations of equilibrium problems 
in competitive supply chains. In the literature, different solution approaches have been proposed 
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for different types of variational inequality problems (VIP). Han and Lo [12], He [14], He and 
Liao [15] and Wang et al. [43] consider nonlinear VIPs, whereas Andreani et al. [1], He and 
Zhou [16] and Liao and Wang [24] focus on linear VIPs. The stage-two game of the problem we 
study corresponds to an asymmetric linear VIP, for which the method proposed by Han [11] has 
been shown to be efficient. We then focus on solving the stage-one game.  
 
Finding a solution to the stage-one game is important for understanding and characterizing the 
structural properties of equilibrium facility locations. Government agencies, land-use planners, 
and suppliers to competing firms may benefit from understanding the actions private decision-
makers will take in equilibrium. On the other hand, finding equilibrium facility locations is 
challenging. A total enumeration approach for finding a solution to the stage-one game is 
computationally burdensome (because the number of potential solutions increases exponentially 
in the number of competing firms and potential locations). Therefore, we provide a heuristic 
search algorithm for the stage-one game that can be used to understand the the structural 
properties of equilibrium solutions. A genetic algorithm is proposed by Rhim [33] to determine 
equilibrium locations for the problem studied by Rhim et al. [34], while Sáiz and Hendrix [36] 
provide a multi-start search algorithm. Our method is a search algorithm that evaluates the 
conditions that must be satisfied by any equilibrium-location decision.  
 
Our work extends Rhim et al. [34] and Sáiz and Hendrix [36] by including nonlinear traffic 
congestion cost terms and by allowing firms to locate more than one supply facility. The effects 
of traffic congestion on supply chain activities are discussed in [25], [32], [37] and [44], which 
combine supply chain and traffic congestion analysis. Konur and Geunes [20] study the effects 
of traffic congestion on supply chains by modeling traffic congestion costs endogenously, unlike 
the studies mentioned above. We model traffic congestion costs in a similar manner to Konur 
and Geunes [20], although they study a competitive location problem involving identical 
suppliers, whereas we permit heterogeneous suppliers. The solution methods we will discuss can 
enable efficient planning of supply chain activities (facility locations and market-supply quantity 
decisions) within a congested distribution network in the presence of competition.  
 
The rest of this paper is organized as follows. In Section 2, we formulate our problem and 
discuss the details of the problem setting and the solution approach. In Section 3, the variational 
inequality formulation of the stage-two game is stated and a solution method is provided. In 
Section 4, conditions that an equilibrium location decision must satisfy are analyzed and the 
heuristic search method is explained. In Section 5, numerical studies on the efficiency of the 
heuristic method are documented. Finally, we provide concluding remarks and future research 
directions in Section 6.  

B.2. Problem Formulation and Solution Approach 

Consider a set of k  firms who wish to supply a set of n  customer markets. The firms compete 
with each other in the markets for the sales of a single product. The firms may locate supply 
facilities at m  potential locations in order to supply the markets. The costs incurred by supply 
firms include transportation, traffic congestion and facility location costs. These costs depend on 
the firms’ location choices and the quantities they send from these locations to the markets. A 
market’s price for the good is a linear, decreasing function of the total quantity supplied to the 
market from all firms, and each firm wishes to maximize its own profit. We assume that variable 
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transportation costs are a linear function of the quantity shipped from facilities to markets, and 
that these costs are firm dependent. Furthermore, firms incur traffic congestion costs, which are 
convex and non-decreasing in the quantity supplied from a facility to a market, and these costs 
are also firm-specific. If a firm locates a facility at a potential location, it incurs a fixed location 
cost that depends on the location and the firm. Moreover, we assume that a firm will not open 
more than one facility at a given location, implying that the firm will create sufficient capacity at 
the location to accommodate the quantity supplied by the facility to all markets in equilibrium. 
The following list defines the notation we use in defining our model.  
 r: index for firms, {1,2, , }r R k∈ =  
 i: index for locations, {1,2, , }i I m∈ =  
 j: index for markets, {1,2, , }j J n∈ =  
 qijr: quantity shipped from the facility of firm r  at location i  to market j  
 jrq• : total quantity shipped to market j  by firm jr ijr

i I
r q q•

∈

, =∑  

 i rq • :  total quantity shipped from location i  by firm i r ijr
j J

r q q•
∈

, = ∑  

 ijq • : total quantity shipped from location i  to market ij ijr
r R

j q q•
∈

, =∑  

 jq• • : total quantity shipped to market i r ijr
r R i I

j q q•
∈ ∈

, =∑∑  

 Q : k×m×n  matrix of ijrq  values  
 xr:  m-vector representing the location decisions of firm r  
 X :  m×k matrix representing all location decisions 
 ( )j jp q• • : price function for market j  

 ( )ijr ijg q • : traffic congestion cost coefficient from location i  to market j  for firm r  
 cijr: transportation cost coefficient for sending units from location i  to market j  
  for firm r  
 fir: fixed cost of opening a facility at location i  for firm r 
  ( )r rf x : total facility location cost for firm r   
 
Then, we can formulate the profit function for each firm r  as follows:  

 ( ) ( )r j ijr ijr ijr ijr ijr ijr ijr r r
j J i I r R i I j J i I j J i I r R

p q q c q q g q f
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈⎝ ⎠⎝ ⎠

Π , = − − − .∑ ∑∑ ∑ ∑∑ ∑∑ ∑Q X x (B.1) 

The above profit function consists of the supply firm’s total revenue, less variable costs, traffic 
congestion costs, and facility location costs.  
 
We assume that jp , the price in market j , is determined by the function  
 ( )j j j j jp q a b q• • • •= − ,  (B.2) 

where 0ja ≥  and 0jb >  denote the price at zero demand and the price sensitivity for market j . 
Note that Equation (B.2) is the inverse demand function associated with Cournot competition. As 
illustrated by the profit function, the transportation cost is linear in the quantity sent from facility 
i  to market j  with marginal cost 0ijc ≥ . Note that ijc  can be easily adjusted to account for any 
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per-unit production costs without loss of generality. That is, a location-specific parameter 0iv ≥  
denoting the per-unit production cost at location i  can be added to ijc . The traffic congestion 
cost coefficient for link ( )i j,  is defined as ijg  (which is a function of the total quantity of flow 
on the link) below.  
 ( )ijr ij ijr ijg q qα• •=  (B.3) 

The parameter 0ijrα >  is a traffic congestion cost multiplier for flow on link ( )i j,  for firm r. 
Hence, the congestion cost incurred by a firm using link ( )i j,  increases in the total flow on the 
link. It follows from Equations (1) and (3) that firm r’s congestion cost equals 0ijr ijr ijq qα • =  
when 0ijrq = . On the other hand, when 0ijrq > , the firm’s congestion cost equals 0ijr ijr ijq qα • > , 
and increases quadratically with ijrq  for fixed values of the quantities sent by the other firms on 
the link. This implies that the congestion cost incurred by firm r  on link ( )i j,  is nondecreasing 
and convex in qijr. A convex and nondecreasing function is consistent with typical traffic 
congestion costs, which increase in volume at an increasing rate. Moreover, permitting ijrα  to be 
firm-specific reflects the fact that firms may price congestion differently. We note that Konur 
and Geunes [20] model traffic congestion costs in a similar manner. However, they assume that 
all firms cost parameters are identical, i.e., ijr ijα α=  and ijr ijc c=  r R∀ ∈  (they also assume 
identical facility location costs, which we do not).  
 
As in typical practice, a firm will determine the locations of facilities prior to deciding on the 
quantities to supply from facilities to markets. Moreover, the individual firm’s profit is a function 
of the decisions of other firms. Because of this, we use a two-stage solution approach. In the first 
stage, all firms choose locations. In the second stage, they then determine supply quantities from 
facilities to markets. We first solve the Stage-two problem for given location decisions. We use 
game-theoretic techniques (in particular, Nash Equilibria) to characterize equilibrium supply 
quantities and we provide an approximation scheme to find Pure Nash Equilibrium (PNE) 
solutions. For the Stage-one decisions, since total enumeration of all possible location decisions 
requires analyzing exponentially many location matrices (and each location matrix requires 
determining the profits for exponentially many other location matrices to check whether the 
location matrix is an equilibrium point), we provide a heuristic method for determining PNE 
locations. Therefore, we use a backward induction approach to find the PNE location decisions, 
and the resulting solution is a Subgame Perfect Nash Equilibrium [39]. We provide numerical 
results on the efficiency of the heuristic method by comparing it with a random search method.  

B.3. Stage-two Game: Quantity Decisions 

In this section, we formulate the problem corresponding to the game of determining equilibrium 
supply quantities for given location decisions. We refer to this restricted game as the Stage-two 
Game. The first-order conditions for the Stage-two Game will imply that the supply quantities 
for each market can be analyzed separately; thus, we study the Stage-two Game for a specific 
market. We first present the variational inequality formulation of the Stage-two Game for a 
specific market and characterize important properties of the variational inequality formulation, 
which enable us to use an efficient algorithm for the solution of the Stage-two Game for a 
specific market.  
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We first consider the Stage-two game for a given first-stage solution, i.e., when the vectors rx  
for each 1 2r … k= , , , , have been pre-determined, which implies that the matrix X  is fixed. This 
implies that ( )r rf x  is also fixed at 0=X X , and can be ignored when analyzing the Stage-two 
Game. Based on the profit function (B.1) and our definitions of the price (B.2) and congestion 
(B.3) functions, firm r ’s profit function at 0=X X  can then be written as  

 0( ) ( )r j j j jr ijr ijr ijr ijr ij
j J i I i I

a b q q c q q qα
⎡ ⎤
⎢ ⎥
⎢ ⎥• • • •= ⎢ ⎥∈ ∈ ∈⎣ ⎦

Π | = − − − .∑ ∑ ∑X X
Q  (B.4) 

It is straightforward to show that Equation (B.4) is a strictly concave function in each variable 
0ijrq ≥ , because 0jb >  and 0ijrα > . Letting 0

rI  denote the set of locations at which firm r  has 

opened a facility (in the corresponding Stage-one solution at 0=X X ), we have 0ijrq =  for all 
0
rj J i I∈ , ∉ . The first-order conditions ( 0( ) 0r ijrq

=
∂Π | / ∂ =

X X
Q , for ijrq  values such that 0ijrq > ) 

must be satisfied at a Nash equilibrium solution for the Stage-two Game. In particular, if 0ijrq >  
then a Nash equilibrium solution must satisfy the condition  
 [ ] [ ] 0j j j jr ijr ijr ijr ija b q q c q qα• • • •− + − − + = .  (B.5) 

Observe that Equation (B.5) is independent of markets other than j, which implies that we can 
analyze the equilibrium conditions for market j  independently of other markets (similar results 
are given in [34] and [36]).  
 
We define 0j =

|
X X

Q  as the vector of supply quantities for market j  given the location matrix 0X . 
Then, the profit function for firm r  in market j  under these supply quantities, denoted by 

0( )j
r jfQ

=
Π |

X X
, can be written as  

 0
0 0

( ) ( )
r r

j
r j j j jr ijr ijr ijr ijr ij

i I i I

p q q c q q qα• • • •=
∈ ∈

Π | = − − .∑ ∑X X
Q  (B.6) 

Because the equilibrium conditions for market j  are independent of the other markets for the 
given location matrix 0X  we focus on the Stage-two Game for an arbitrary market j. Next, we 
provide a variational inequality formulation for the Stage-two Game for market j. Note that we 
cannot use simple methods similar to those in [34] and [36] to find equilibrium quantities due to 
the complexity of the first order Nash equilibrium conditions stated in Equation (B.5).  
 
Define 0

rI| |  as the cardinality of the set 0
rI  for the given location decisions 0=X X . The supply 

quantities flowing to a market can be represented by the λ -vector jQ , where 0
rr R

Iλ
∈

= | |∑ . 
Since 0ijrq =  0

ri I∀ ∉  for any firm r , r R∈ , these flows are not accounted for in the vector jQ . 

Thus, j Rλ
+∈Q . The Nash equilibrium quantities must be optimal for each firm, given the 

optimal decisions of all other firms. As the profit function of each firm is strictly concave in 
every ijrq , the optimality conditions for each firm can be written in variational inequality form. It 

follows from [9], [26] and [27] that j
∗Q  is a Nash equilibrium if it satisfies the following 

variational inequality:  
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0

0

( )
( ) 0

r

j
r j

ijr ijr j
r R i I ijr

q q R
q

λ∗=
+

∈ ∈

∂Π |
− × − ≥ ,∀ ∈ .

∂∑∑ X X
Q

Q  (B.7) 

The variational inequality in Equation (B.7) for market j  then takes the following explicit form  
 

0

( ) ( ) ( ) 0
r

ijr j j j jr ijr ijr ij ijr ijr j
r R i I

c a b q q q q q q Rλα ∗
• • • • +

∈ ∈

⎡ ⎤− + + + + × − ≥ ,∀ ∈ .⎣ ⎦∑∑ Q  (B.8) 

Next, we present the problem of determining equilibrium quantities at market j, assuming given 
location decisions, using a classical variational inequality representation. We then study 
qualitative properties of this variational inequality problem formulation.  
 
Let r

j rS∈Q  denote the vector of supplies from firm r  facilities to market j; that is, 

01( )
r

r T
j jr I jr

q … q
| |

= , ,Q  r R∀ ∈ , where rS  denotes the strategy set of firm r . Then 
1(( ) ( ) )T k T T

j j j… S∗ ∗ ∗= , , ∈Q Q Q , where 1 kS S … S= × × , is a Nash equilibrium solution if it satisfies  

 0 0( ) ( )j r r j r r r
r j j r j j j rS r R∗ − ∗ − ∗

= =
Π , | ≥ Π , | ∀ ∈ ,∀ ∈ ,

X X X X
Q Q Q Q Q  (B.9) 

where 1 ( 1) ( 1)( ) ( ) ( ) ( )
Tr T r T r T k T

j j j j j… …− ∗ ∗ − ∗ + ∗ ∗⎛ ⎞
⎜ ⎟⎝ ⎠

= , , , , ,Q Q Q Q Q . The next theorem characterizes the 
Stage-two Game solution for market j  under a variational inequality approach. The proof of the 
theorem is based on the Nash equilibrium conditions stated in Equation (B.9) and the first-order 
optimality conditions of the strictly concave profit function for any firm r R∈ .  
 
Theorem B.1. j S∗ ∈Q  solves the Stage-two Game at market j if it solves the following 

variational inequality problem for given location decision 0=X X :  
 ( ) 0j j j jF S∗ ∗, − ≥ ,∀ ∈ ,Q Q Q Q  (B.10) 

where 1 0 01( ) ( ( ) ( ))k
j j

j j
j j k jF …

= =
= −∇ Π | , , −∇ Π |

Q X X Q X X
Q Q Q  is a λ -row vector function and we 

have 0 0 0 01( ) ( ( ) ( ) )r
j r

j j j
r j r j jr r j tbfX I jr

q … q
= = = | |

∇ Π | = ∂Π | / ∂ , ,∂Π | / ∂
Q X X X X X

Q Q Q  r R∀ ∈ .  

 
Proof: See [26].   
 
Note that ( )jF Q  is a linear, continuous and differentiable function. Now let us consider the set 
S . We already know that supply quantities are bounded from below, since 0ijrq ≥ . If we assume 
that the price in any market will not be negative, then there is an upper limit on the total quantity 
supplied to that market. This implies that for any market j, 0( ) 0

r
j j ijrr R i I

a b q
∈ ∈

− ≥∑ ∑ . Thus, we 

have that ijr j jq a b≤ / , i.e., j ja b/  is a natural upper bound for ijrq . This implies that S  is a 
polytope, i.e., it is a compact and convex set. The next property demonstrates the existence of a 
solution to the variational inequality problem stated in Equation (B.10).  
 
Property B.1. Suppose that 0( ) 0

r
j j ijrr R i I

a b q
∈ ∈

− ≥∑ ∑  j S∀ ∈Q . Then the variational 

inequality problem ( ) 0j j j j< F > S∗ ∗, − ≥ ,∀ ∈Q Q Q Q  admits at least one solution j
∗Q .  
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Proof: All proofs can be found in the Appendix.   
 
Property B.1 also follows from [35], as the profit function 0( )j

r j =
Π |

X X
Q  is strictly concave and 

the set of strategies, S, is compact and convex for each player, i.e., for each firm. The following 
property characterizes the strict monotonicity of the variational inequality function F.  
 
Property B.2. ( )jF Q  is strictly monotone on S .  
 
It can be seen from the proof of Property B.2 that ( )jF Q  is strictly monotone on the entire space 

Rλ
+ . As a direct result of Properties B.1 and B.2, the uniqueness of the solution to the variational 

inequality problem is stated next.  
 
Property B.3. Suppose that 0( ) 0

r
j j ijrr R i I

a b q
∈ ∈

− ≥∑ ∑  j S∀ ∈Q . Then the variational 

inequality problem ( ) 0t
j j j jF S∗ ∗, − ≥ ,∀ ∈Q Q Q Q  has a unique solution.  

 
The uniqueness of the solution to the variational inequality problem also follows from the fact 
that the profit function of each firm is strictly concave. Moreover, when the condition of 
Property B.3 is satisfied, the strategy set for each firm is compact and convex, as noted 
previously. Hence, it follows that the Nash equilibrium point is unique. In Properties B.1 and 
B.3, S  is assumed to be a compact set. While compactness is required for the uniqueness of the 
solution, we do not require S  to be compact for the existence result. The following property 
gives an existence condition when S  is the nonnegative orthant.  
 
Property B.4. The variational inequality problem, ( ) 0j j j jF S∗ ∗, − ≥ ,∀ ∈Q Q Q Q  admits at 

least one solution j
∗Q  given that S Rλ

+= .  
 
Before presenting a solution method for the variational inequality problem formulation, we note 
that F  is Lipschitz continuous. That is, there exists an 0L >  such that 

( ) ( )a b a b
j j j jF F L− ≤ −Q Q Q Q , a b

j j S∀ , ∈Q Q . The Lipschitz continuity of F  follows from the 
fact that F  is a continuously differentiable and linear function.  
 
We are now ready to present an algorithm that solves the variational inequality problem stated in 
Equation (B.10). Because we have a linear variational inequality problem, an algorithm for linear 
variational inequality problems will be stated. However, it should be noted that the modified 
projection algorithm of Korpelevich [21] can also be used to solve our problem, and that this 
algorithm will converge to a solution. The convergence of the modified projection algorithm 
follows from Properties B.1, B.2, and the Lipschitz continuity of F . See [27] for a discussion of 
the algorithm’s application to a supply chain network equilibrium problem. The algorithm we 
use is the self-adaptive projection method proposed by Han [11] for solving linear variational 
inequalities in the following form  
 ( ) ( ) 0TMx z x x x K∗ ∗+ − ≥ ,∀ ∈ ,  

where K  is a nonempty, convex and closed subset of nR , n nM R ×∈  is a given matrix, and 
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nz R∈  is a given vector. In our case, the resulting linear variational inequality problem is 
asymmetric, for which M  is defined by the partial derivatives as stated in Theorem B.1, and the 
vector z  consists of the ijr jc a−  values. Moreover, K S Rλ

+= = . The algorithm can be 
formalized as follows.  
 
Algorithm B.1.  
 
Self-adaptive Projection method for the variational inequality formulation of the Stage-two 
Game at market j .  
 

Step 0.  Start with a 0
j Rλ∈Q . Let  denote an iteration counter. Set 0 2γ< < , 

0 0,β > 0ε ≥ , and a sequence [0 ){ }τ ⊆ ,∞  with 
0
τ∞

=
< ∞∑ . Set 0:= .  

 
Step 1. If ( )je β ε∞, ≤Q , then stop; else go to Step 2. Here, 

( ) [ ( )]Se x x P x Mx zβ β, = − − +  where [ ]SP .  denotes the orthogonal projection 
from Rλ  onto S .  

 
Step 2.  Compute the next iterate using 1 1( ) ( )j j jI M eγ β β+ −= − + ,Q Q Q .  
 
Step 3.  Choose the next parameter 1β +  from the interval 1

11 (1 )τ β β τ β++ ≤ ≤ + . Set 
1:= +  and go to Step 1.  

 
The algorithm requires calculating the inverse of a matrix and taking the projection of a point 
onto the set S . In our problem, S  is the nonnegative orthant and, hence, projection is easily 
carried out. In particular, as noted by Han [11] as well, projection onto S  using the Euclidean-
norm is defined component-wise for each element of the vector to be projected. Explicitly, 

[ ]S j jP x x=  if 0jx ≥ , and, [ ] 0S jP x =  if 0jx < . The next theorem establishes the convergence of 
Algorithm B.1.  
 
Theorem B.2. The Self-adaptive Projection method, stated in Algorithm B.1, converges to a 
solution of the variational inequality formulation in Equation (B.10).  
 
In the next Section, we study the Stage-one Game, which seeks an equilibrium location decision 
matrix if one exists, or concludes that an equilibrium location decision does not exist.  

B.4. Stage-one Game: Location Decisions 

The goal of this section is to determine an equilibrium location decision matrix. We first focus 
on defining dominant strategies, which are candidates for an equilibrium location matrix. Later, 
for a given location matrix in a dominant strategy set, we check to see whether it is an 
equilibrium location matrix. Note that a location matrix X  consists of the location vectors for 
each firm, where the vector for firm r  is denoted by the column vector rx ; that is, the thr  
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column of X  represents the location decisions for firm r . Moreover, the thi  row of X  
determines the set of firms with a facility at location i . Let irx  denote the entry in the thi  row 
and thj  column of X . Then 1irx =  if firm r  has a facility at location i  and 0irx =  otherwise. 
Recall from Section 1 that irf  denotes the fixed facility location cost associated with location i  
and firm r .  
 
Now let ( )∗Q X  denote the equilibrium quantities for a given location matrix X . Observe that 
we know how to find ( )∗Q X  for any given X  from the previous section. In particular, we can 
determine the equilibrium quantities for each market using the variational inequality formulation 
and Algorithm B.1. Recall that Equation (B.9) gives the Nash equilibrium conditions for the 
equilibrium quantities. Similarly, the condition required for a location matrix X  to correspond to 
an equilibrium decision reads  
 

( ) ( )
r r

r r r r r r R∗ ∗ ∗

⎛ ⎞⎛ ⎞∗ − ∗ − ∗
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Π , | ≥ Π , | ∀ ,∀ ∈ ,
Q X Q X

x X x X x  (B.11) 

where r
∗x  denotes the equilibrium location decision of firm r , r− ∗X  denotes the equilibrium 

decisions of all other firms, i.e., 1 1 1[ ]r
r r k… …− ∗ ∗ ∗ ∗ ∗
− += , , , , ,X x x x x , 1 1 1[ ]r r r k… …∗ ∗ ∗ ∗

− += , , , , , ,X x x x x x , and 
∗X  denotes the equilibrium location matrix. Note that the profit function given in Equation 

(B.11) includes facility location costs ( ) ( )r r r ir iri I
f f f x

∈
= =∑X x . In the next proposition, we 

state a simple condition that must be satisfied by any equilibrium location decision.  
 
Proposition B.1. Let ∗X  be an equilibrium location decision. Then, if 0irf > , we must have 

0irx∗ =  when ( ) 0i rq∗ ∗
• =X .  

 
Proposition B.1 implies that there may exist multiple equilibria when 0irf =  for some i I∈  and 
r R∈ . In particular, if 0i rq∗

• =  and 0irf = , the profits of any firm will be the same when 0irx =  
or 1irx = . It also follows from Proposition B.1 that while checking whether X  is an equilibrium 
location decision, we should first set 0irx =  if ( ) 0i rq∗

• =X , and then check the conditions in 
Equation (B.11). Hence, we define the following rule that we will use in our heuristic approach.  
 
Rule B.0: The following procedure generates a dominating location matrix:  
 

Step 0.  Let X  be a given location matrix with entries irx  and let L  be a given list of 
location matrices.  

 
Step 1.  If L∈X , set 0continue = , stop and return 0continue = . Else, set 1continue = , 

L L { }= ∪ X , solve for the equilibrium quantities corresponding to X  and go to 
Step 2.  

 
Step 2.  Construct 0X  with entries 0

irx  by defining 0 0irx =  if ( ) 0i rq∗
• =X , and 0 1irx =  

otherwise. Return 0X .  
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In Step 0 of Rule B.0, we are given a list of matrices denoted by L . We use L  to keep track of 
the location matrices that we have analyzed in our heuristic method and we will explain its use 
when we state our heuristic method. The list L  consists of the location matrices which are not 
equilibrium and, hence, if the given location matrix is in L , we do not need to continue and 
check whether it satisfies the equilibrium conditions. However, when X L∉ , the output of Rule 
B.0 is the location matrix 0X , which dominates the original location matrix X  for at least one 
firm (unless 0 =X X ), which is why we use the dominating location matrix phrase. Now, let T ∗  
denote the set of equilibrium location matrices and let 0T  denote the set of location matrices 
generated using Rule B.0. Then, it follows from Proposition B.1 that  
 0T T∗ ⊆ .  
We next focus on dominance relations within the columns of 0X , i.e., the location decisions of a 
specific firm. The following proposition characterizes such a dominance relation.  
 
Proposition B.2. Let 0X  be generated from a location matrix X  by using Rule B.0. If 

0 0( ( ) ) 0r
∗Π , <Q X X  for some firm r R∈ ; then 0X  cannot be an equilibrium location matrix.  

 
Proposition B.2 implies that 0X  can be an equilibrium decision if and only if each one of its 
non-zero columns produces positive profit for the corresponding firm. This condition is referred 
to as a viability condition by Dobson and Karmarkar [2] and Rhim et al. [33]. At this point, it is 
important to mention the Stable Set concept introduced in [2] and used by [34] and [36] to study 
location decisions in a similar competitive facility location setting. In [34], each firm may open 
at most one facility, and a set of facility locations is defined to be stable as long as those firms 
with a facility make a positive profit (viability condition) and the firms without a facility cannot 
make a positive profit by opening a facility (survival condition). A firm is referred to as an 
entrant whenever the firm has a facility. However, in our study, a firm may open more than one 
facility. Thus, a firm is an entrant if the firm opens at least one facility. Proposition B.2 implies 
that an entrant firm should make positive profit as a result of its location and corresponding 
quantity decisions, which can be referred to as the viability condition for our case. On the other 
hand, defining a survival condition can be ambiguous in our case. We note that the survival 
condition defined in [34] does not imply that an entrant firm must choose each location that is 
individually profitable. This follows from the fact that the facility location decisions of an entrant 
firm are not independent. In particular, suppose that an entrant firm may make positive profit by 
locating a facility at a location where the firm has no facility. It is possible that locating a facility 
at that location may decrease the overall profit of the entrant firm. However, a non-entrant firm, 
by definition, can not make a positive profit by locating a set of facilities at any subset of the 
locations. We note that this discussion is already implied by Proposition B.2. In the next 
subsection, we study a heuristic method to move to a viable location decision from a randomly 
given location decision X .  

B.4.1. Generating a Viable Location Decision 

Now suppose that we are given a random location matrix X  with entries irx . Let 0X  be 
generated from X  by using Rule B.0. Next we define a rule to move from matrix 0X , which is 
not viable, to a viable location decision. The intuition behind this rule is as follows. If 0X  is not 
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viable, then there exists at least one firm with negative total profit. This further implies that there 
exists at least one facility of that firm with negative profit, i.e., for which the facility location 
cost exceeds the total profit of the firm gained by supplying markets from the facility. This 
discussion does not imply that each facility must be profitable in a viable location matrix. 
Instead, it implies that there must be a facility with negative profit in a location matrix that is not 
viable. For such matrices that are not viable, we first set 0irx =  when 0( ) 0irπ <X  for a firm r  
such that 0( ) 0rΠ <X , where 0( )rΠ X  and 0( )irπ X  denote the total profit of firm r  under 0X  
and the firm’s profit at location i , respectively. Then, we determine the equilibrium quantities 
for the modified matrix X  and generate the corresponding modified matrix 0X . We repeat this 
process until we find a viable location matrix. We only make changes in columns that cause 
inviability. Specifically, this rule is defined as follows.  
 
Rule B.1: The following procedure generates a viable location matrix:  
 

Step 0.  Let X  be a given location matrix with entries irx  and let L  be a given list of 
location matrices.  

 
Step 1.  Apply Rule B.0 with X  and L . If 0continue = , stop and return 0continue = . Else, 

generate 0X . Define R−  as the set of firms with negative total profit at 0 ,X  i.e., 
0( ) 0rΠ <X , r R−∀ ∈ . Go to Step 2.  

 
Step 2. If ,R− = ∅  stop, 0X  is viable and return 1 0=X X . Else, let 

0ˆ ˆ( ) argmin ( )irr { i I r R }π −, = : ∈ , ∈Xı  and set ˆˆ 0rx =ı  in X . Go to Step 0.  
 
Note that the quantity decisions for X  and 0X  are the same, i.e., 0( ) ( )i r i rq q• •=X X . Hence, the 

0( )irπ X  values can easily be calculated from the ( )irπ X  values by simply letting 
0( ) ( )ir irπ π=X X  when 0 1irx =  or 0irx =  and, 0( ) 0irπ =X  when 0 0irx =  and 1irx = . In Step 2 of 

Rule B.1, we modify the location matrix X  given in Step 0; that is, we do not close the facilities 
with negative profits under 0X  and try to get a viable location matrix that has fewer facilities 
located than 0X . The reason we use such a modification is that we try to capture the possibility 
that the facilities closed due to zero supply with Rule B.0 can have positive supply after we close 
the facilities with positive supply but with negative profits. Thus, we generate a viable location 
matrix with more open facilities. At this point, it should be noted that the original matrix X  and 
the modified matrix differ in only one entry.  
 
Now suppose that ( )iX  and ( 1)i+X  are two consecutive location matrices entering Step 0 of Rule 

B.1 and let 0
( )iX  and 0

( 1)i+X  be the viable matrices generated by Rule B.0 in Step 1 of Rule B.1 
corresponding to ( )iX  and ( 1)i+X , respectively. As noted previously, ( )iX  and ( 1)i+X  differ in only 

one entry. However, 0
( )iX  and 0

( 1)i+X  may differ in more than one entry. We also close the facility 
with the most negative profit, as such a facility is less likely to be open in an equilibrium 
solution. It should be noted that in a viable location matrix, there may be some facilities with 
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negative profit for some firms, although no firm will have negative total profit. Rule B.1 will 
always find a viable location matrix after starting with a random location matrix. This follows 
because we may repeat Step 2 of Rule B.1 at most m k×  times, and after at most m k×  
repetitions, we would end up with 0=X , which is viable, in the worst case. We denote a viable 
location matrix generated at the end of Rule B.1 corresponding to the given location matrix X  
by 1X . At this point we have the following relations:  
 1 0T T T∗ ⊆ ⊆ ,  

where 1T  denotes the set of location matrices generated using Rule B.1. In the next subsection, 
we focus on checking whether the location decisions for any firm represent the best response in a 
viable location matrix.  

B.4.2. Equilibrium Check 

Now suppose that 1X  is a viable location matrix generated from X  by using Rule B.1. To 
determine whether 1X  is an equilibrium location matrix, we need to check if 1

rx , the thr  column 
of 1X , is the best response of firm r , r R∀ ∈ . To do so, we need to check all possible location 
vectors for firm r  while the location decisions of the other firms are fixed. Note that there are 
2m  different location decisions for each firm and, hence, we need to check the profit of firm r  
for 2 1m −  location vectors, while keeping the other firms’ location decisions unchanged. When 
we find that 1

rx  is not the best response of firm r  for some r R∈ , then we know that 1X  is not 
an equilibrium location matrix. As a result, we will need to consider another viable location 
matrix as a potential equilibrium location matrix. Note that it is sufficient to show that there 
exists a better location decision for at least one firm in 1X  to conclude that 1X  is not an 
equilibrium location matrix. To this end, we define two additional rules, referred to as Rule B.2 
and Rule B.3, to check whether a better location decision exists for firm r  under 1X . The 
intuition behind Rule B.2 is as follows. If there exists a firm r  facility with negative profit, we 
check whether closing this facility will increase firm r ’s total profit. We noted in the previous 
section that there may exist facilities with negative profits for a viable location matrix. If the total 
profit increases by closing this facility, then we know that the current location vector for the firm 
under 1X  is not the best response of the firm and, hence, 1X  is not an equilibrium location 
matrix. We should therefore consider another viable location matrix as a candidate equilibrium 
matrix. This rule proceeds in the same way as Rule B.1, but is applied only to one column of 1X  
each time.  
 
Rule B.2: The following procedure searches for an improving location matrix for a firm:  
 

Step 0.  Let X  be a given location matrix with entries irx  and let L  be a given list of 
location matrices.  

 
Step 1.  Apply Rule B.1 with X  and L . If 0continue = , stop and return 0continue = . Else, 

generate 1X  with entries 1
irx  and determine the profit at equilibrium associated with 

1X . Set 1r =  and go to Step 2.  
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Step 2.  If r k>  go to Step 5. Otherwise, define rI −  as the set of facilities with negative 
profit under 1X , i.e., 1( ) 0irπ <X , ri I −∀ ∈ , and go to Step 3.  

 
Step 3. If rI − = ∅ , set 1r r= +  and go to Step 2. Otherwise, let 

1ˆ( , ) arg min{ ( ) : }ir rı r X i Iπ −= ∈  and construct 2X  by letting 2 1
ir irx x=  and 2

ˆ 0rx =ı . 
Go to Step 4.  

 
Step 4.  Determine the profit at equilibrium for 2X . If 1 2( ) ( )r rπ π<X X , set ˆ 0rx =ı  in X  

and go to Step 0. Otherwise, set ˆ\{ }r rI I ı− −=  and go to Step 3.  
 
Step 5.  Return 2X .  

 
The purpose of Rule B.2 is to determine whether the viable location matrix 1X  generated from 
X  is not in equilibrium without finding the best response of any firm. Rule B.2 checks whether 
closing one of the facilities with negative profit will improve the total profit of a firm. If there is 
an improvement, X  is updated and a new viable location matrix is generated. Now suppose that 

( )iX  and ( 1)i+X  are two consecutive location matrices entering Step 0 of Rule B.2 and let 1
( )iX  

and 1
( 1)i+X  be the viable matrices generated by Rule B.1 in Step 1 of Rule B.2 corresponding to 

( )iX  and ( 1)i+X , respectively. We note that 1
( ) ( 1)i i+≠ 1X X , because we change an entry of ( )iX  to 0  

whose value is 1 in 1
( )iX ; hence, 1

( 1)i+X  cannot have 1 in this entry. Note that Rule B.2 terminates 
when either (i) there is no facility with negative profit or (ii) closing any facility with negative 
profit does not increase the profit of the corresponding firm. The output of Rule B.2 is either 

0continue =  or 2X ,which is a viable location matrix and satisfies (i) or (ii). When 0continue = , 
this means that if we continue, we will end up with a matrix 2X  that has already been analyzed 
and, hence, we should start applying Rule B.2 to another location matrix X . We have the 
following relations:  
 2 1 0T T T T∗ ⊆ ⊆ ⊆ ,  
where 2T  denotes the set of location matrices generated using Rule B.2. Now suppose that we 
have applied Rule B.2 and generated 2X . We still do not know whether 2X  is an equilibrium 
location matrix. The next step is to determine whether 2X  contains the best responses for each 
firm. For this purpose, we perform a full neighborhood search for each firm as explained in Rule 
B.3.  
 
Rule B.3: The following procedure determines whether a location matrix is in equilibrium:  
 

Step 0.  Let X  be a given location matrix with columns rx  . Set 1r =  and go to Step 1.  
 
Step 1.  If r k> , stop; X  is an equilibrium location matrix, and return ∗ =X X  and 

1equilibrium = . Otherwise, enumerate all possible location decisions of firm r , 
i.e., generate all possible rx  vectors. Determine the best response of firm r  when 
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the other firms’ location decisions are fixed at ix  i r≠ , by comparing the total 
profit of firm r  for each matrix X  (which differs from X  only in the thr  column). 
Let ( )rx∗ X  denote the best response of firm r  and go to Step 2.  

 
Step 2.  If ( )r rx∗ =X x , set 1r r= +  and go to Step 1. Else, stop; X  is not an equilibrium 

location matrix and return 0equilibrium = .  
 
The purpose of Rules B.2 and B.3 is to determine if a given viable location matrix is not in 
equilibrium as quickly as possible. If Rule B.2 cannot guarantee that the viable location matrix is 
not an equilibrium location matrix, then Rule B.3 completes the check by considering all other 
options for each firm. Hence, at the conclusion of Rule B.3, we will either have an improved 
location decision for a firm, which implies that the location matrix is not in equilibrium, or 
conclude that the location matrix is in equilibrium. Next, we define our heuristic method to 
search for an equilibrium location matrix.  

B.4.3. Heuristic Algorithm for Finding an Equilibrium Location Decision 

In this section we provide a heuristic algorithm to search for an equilibrium location matrix. The 
algorithm starts with a random location matrix and first moves to a viable location matrix. Then, 
the algorithm checks whether the equilibrium conditions are satisfied by this viable matrix. 
During the move from a random location matrix to a viable location matrix, Rule B.1 is utilized. 
Rules B.2 and B.3 are used to check for equilibrium conditions. Rules B.2 and B.3 are mainly 
aimed at simplifying the process of checking equilibrium conditions by easily showing whether 
the equilibrium conditions are not satisfied, when the current viable matrix is not an equilibrium 
location matrix. However, a full search is needed to determine an equilibrium location matrix. It 
should be emphasized that the algorithm does not perform a full search for each non-equilibrium 
location matrix, which eases the computational burden, as a complete search is burdensome. In 
particular, a total enumeration scheme to find all of the equilibrium location decisions, or to find 
out that there does not exist any equilibrium location decision, requires checking the equilibrium 
conditions for 2m k×  locations. Moreover, checking the equilibrium conditions for any given 
location decision requires analyzing (2 1)mk −  other options. Then it follows that a total 
enumeration scheme would require solving for equilibrium quantities 2 (2 1)m k mk × −  times, which 
is exponential in both m  and k . Hence, we next propose a heuristic method that utilizes the 
rules defined in the previous sections.  
 
Algorithm B.2. The following algorithm is a heuristic method to find an equilibrium location 
matrix, if one exists.  
 

Step 0.  Let L =∅ . Go to Step 1.  
 
Step 1.  If 2m kL ×| |= , stop; there does not exist an equilibrium location matrix. Else, 

generate a random location matrix, X , such that L∉X . Go to Step 2.  
 
Step 2.  Apply Rule B.2 with X  and L . If 0continue = , go to Step 1. Else, generate 2X  
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and go to Step 3.  
 
Step 3.  Apply Rule B.3 to 2X . If 0equilibrium = , go to Step 1. Else, equilibrium is found, 

stop and return ∗X .  
 
Figure B.1 illustrates how the heuristic method proceeds. During the algorithm, we define the list 
L  to keep track of the location matrices that have been processed. Note that if the algorithm does 
not stop at Step 3, then we know that the locations in L  are not equilibrium location decisions, 
and we cannot generate an equilibrium location decision from these location matrices using 
Rules B.0, B.1, B.2 and B.3. Hence, we generate a new location matrix that is not in L . 
Moreover, since there are 2m k×  possible location decisions, we conclude that there does not exist 
an equilibrium location decision when 2m kL ×| |= .  

Figure B.1. Illustration of Algorithm B.2 

 
The efficiency of the heuristic method follows from the fact that it reduces the number of full 
equilibrium checks. In Algorithm B.2, we do not perform a full equilibrium check for any non-
viable location matrix, and even for some of the viable location matrices (those that are non-
equilibrium). In the next section, we compare Algorithm B.2 with a random search algorithm and 
present numerical results that demonstrate that Algorithm B.2 is more efficient in finding an 
equilibrium location matrix.  

B.5. Numerical Studies 

In this section, we compare the heuristic method proposed in the previous section with a random 
search method. We note that to solve for the equilibrium flow quantities for a given location 
matrix, we use Algorithm B.1 with the parameter settings provided in [11] (the efficiency of 
Algorithm B.1 is discussed in [11]). Our aim in this section is to demonstrate the efficiency and 
benefits of Algorithm B.2. However, because our model is new to the literature, no benchmark 
algorithm exists for comparison. Thus, we demonstrate the potential benefits of our proposed 
heuristic algorithm when compared to a naïve or brute force random search algorithm that might 
be applied in practice in the absence of an alternative approach.  
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As a result, we compare Algorithm B.2 with the following random search algorithm.  
 
Algorithm B.3. The following algorithm is a random search method to find an equilibrium 
location matrix, if one exists.  
 

Step 0.  Let L =∅ . Go to Step 1.  
 
Step 1.  If 2m kL ×| |= , stop; there does not exist an equilibrium location matrix. Else, 

generate a random location matrix, X , such that L∉X . Go to Step 2.  
 
Step 2.  Apply Rule B.3 to X . If 0equilibrium = , go to Step 1. Else, equilibrium is found, 

stop and return ∗X .  
 
Note that the only difference between Algorithm B.3 and Algorithm B.2 is that Rule B.2 is not 
used in Algorithm B.3. That also means that Rule B.1 (embedded in Rule B.2) and, hence, Rule 
B.0 (embedded in Rule B.1) are not used in Algorithm B.3 as well. Algorithm B.3 applies a full 
equilibrium check to the given random location matrix and repeats Steps 1 and 2 until either an 
equilibrium location matrix is found or all of the location matrices are determined to be non-
equilibrium. It is worth pointing out that the list of matrices in Algorithm B.3 increases by 1 at 
each occurrence of Step 1. On the other hand, the list of matrices in Algorithm B.2 may increase 
by more than 1 in each occurrence of Step 1. Furthermore, Algorithm B.3 applies Rule B.3 to 
each element of the list, whereas Algorithm B.2 applies Rule B.3 only to the location matrices 
generated by Rule B.2.  
 
For comparison purposes, we use the same sequence of random location matrices within 
Algorithm B.3 and Algorithm B.2 for each problem instance. We solve 10 randomly generated 
problem instances for each of the 12 different combinations of {2,3}k = , {3,4,5}m =  and 

2 3n { }= , . We repeat this process for 3 classes of problems, and note that the parameters for 
each problem instance are uniformly distributed. For each class of problems, [50 100]ja U ,∼  and 

[1 2]jb U ,∼ , where [ ]U l u,  denotes the uniform distribution on [ ]l u, . Table B.1 gives the 
distribution ranges for ijrc , ijrα  and irf  values for each problem class.  

Table B.1. Data Categories for Problem Classes 1, 2 and 3 

 
 
An equilibrium location decision is determined for every problem instance. Each row in Table 
B.2 summarizes the average of 30 problem instances (10 from each problem class), for each 
combination of k , m  and n  (resulting in 360 total instances) for the following data: length of 
the list at termination (list length), number of full equilibrium checks (# of checks) and CPU time 
in seconds.  
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Table B.2. Comparison of Heuristic Method with Random Search Method 

 
 
As can be seen from Table B.2, the heuristic method is much faster than the random search 
method. This is due to the following two points: (i) the heuristic method does not perform a full 
equilibrium check (which is computationally burdensome) for each element within the list and, 
(ii) it moves to a viable location matrix from the given random location matrix and may 
determine that the viable matrix is not an equilibrium location matrix without a full equilibrium 
check. We can see by comparison of the list length at termination that Algorithm B.2 analyzes 
fewer matrices and performs full equilibrium checks for fewer than 75 percent of these matrices 
when compared to Algorithm B.3, which performs full equilibrium checks for all of the location 
matrices it analyzes. However, these values differ by problem class. Table B.3 compares the 
average values of 120 problem instances within each problem class.  

Table B.3. Comparison of Heuristic Method with Random Search Method for Each Problem Class 

 
 
It can be noted from Table B.3 that Algorithm B.2 performs full equilibrium checks 
approximately for 90 percent, less than 50 percent and less than 25 percent of the location 
matrices in the list, for problem classes 1, 2 and 3, respectively. This difference is due to the fact 
that for Class 1 (compared to Classes 2 and 3) and for Class 2 (compared to Class 3) problems, 
the cost parameters are relatively low and, hence, this reduces the likelihood that a solution 
associated with a given location matrix will contain facilities with negative profits. However, 
Algorithm B.2 outperforms Algorithm B.3 in average computational time, as well as in average 
list size and the average number of full equilibrium checks, for each problem class.  
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B.6. Conclusion and Future Research 

In this study, we formulated a general competitive location game with non-linear costs for 
multiple firms in a multiple-market setting under Cournot competition. Each firm incurs firm-
specific linear transportation costs, convex traffic congestion costs and fixed facility location 
costs. That is, we study a heterogeneous cost structure. Unlike the studies in [34] and [36], we 
allow each firm to locate more than one facility, which increases the problem’s complexity. A 
two-stage solution approach is used to find the equilibrium supply quantities and facility 
locations. First, we solve for the equilibrium supply quantities for given facility locations via 
formulating the Stage-two Game as a variational inequality problem. In particular, the resulting 
formulation is an asymmetric linear variational inequality problem defined over the nonnegative 
orthant. We noted that projection methods can be used as a solution method and we discussed a 
self-adaptive projection method proposed in [11], which has been shown to be an efficient 
solution tool for asymmetric linear variational inequality problems. Second, we focused on 
determining the equilibrium facility locations, i.e., the Stage-one Game. Rules B.0, B.1, and B.2 
were defined to ease the computational burden of the search for an equilibrium location decision. 
Utilizing these rules along with Rule B.3, which performs a full equilibrium check, we propose a 
heuristic search method that finds an equilibrium location decision, if one exists. Numerical 
studies implied that the proposed heuristic method is quite efficient when compared to a random 
search method.  
 
We study the problem at hand assuming that the firms are non-cooperative and they take 
simultaneous actions. On the other hand, studying competitive location games with non-linear 
cost terms with cooperation allowed among the firms or under sequential actions remain as 
future research directions. One other future research direction would include studying 
competitive facility location games in multi-echelon supply chains (an equilibrium problem for a 
two-echelon supply chain is studied in [27]; however, this study assumes that facility locations 
are predetermined). We noted that understanding equilibrium location decisions of competing 
firms is important for external suppliers as well as government agencies and land-use planners. 
Therefore, our study establishes a basis for analysis of strategic decisions of these parties as well.  
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7. Appendix 

7.1. Proof of Property B.1 

When ( ) 0j j ijri I r R
a b q

∈ ∈
− ≥∑ ∑

X X
, S  is compact and convex. Moreover, ( )jF Q  is continuous 

on S . Then it follows from [26] that the variational inequality problem admits at least one 
solution.   
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7.2. Proof of Property B.2 

We know that 1
0 0

1( ) ( ( ) ( ))k
j j

j j
j j k jF …= −∇ Π | = , ,−∇ Π | =

Q Q
Q Q X X Q X X  where 

0
0 0 0

1( ) ( ( ) ( ) ) .r
j r

j j j
r j r j jr r j I jr

q … q r R
| |

∇ Π | = = ∂Π | = / ∂ , ,∂Π | = / ∂ ∀ ∈
Q

Q X X Q X X Q X X  Moreover,  
0( )r

j

j
r j∇ Π | = =

Q
Q X X  

0 0 0 01 1 1 1([ ( ) ( )] [ ( ) ( )]).
r r r r

jr j j j jr jr jr j j j j jrI jr I jr I jr I j
c a b q q q q … c a b q q q qα α• • • • • • •| | | | | | | | •

− + + + + , , − + + + + T

hen the Jacobian matrix of ( )jF Q , ( )jF∇ Q , consists of the following values: 
2 2j ijr j j ijrb b bα α+ , , +  or jb . Noting that 0jb >  and 0ijrα > , it follows that each component of 

the Jacobian matrix is positive. Thus, for any 0j ≠Q , we have ( ) 0T
j j jF∇ >Q Q Q . The result 

then follows from the mid-value theorem as noted in [26].  

7.3. Proof of Property B.3 

We know from Property B.1 that there exists at least one solution when 
0( ) 0
r

j j ijrr R i I
a b q

∈ ∈
− ≥∑ ∑  j S∀ ∈Q . Moreover, Property B.2 states that ( )jF Q  is strictly 

monotone. Then it follows from [26] that the solution of the variational inequality problem is 
unique.   

7.4. Proof of Property B.4 

It follows from [18] that a necessary and sufficient condition for existence of a solution to the 
variational inequality problem, ( ) 0j j j jF S∗ ∗, − ≥ ,∀ ∈Q Q Q Q , where S  is closed and convex 

and F  is continuous, is that there exists an 0R >  such that a solution R Rq S∈  to 
( ) 0R R RF q q q q S, − ≥ ,∀ ∈  satisfies Rq R| |< . When we assume that ( ) 0,j j ijri I r R

a b q
∈ ∈

− ≥∑ ∑
X X

 

we know from Property B.1 that a solution exists. Hence, it follows that a solution exists when S  
is closed and convex.   

7.5. Proof of Theorem B.2 

It follows from the proof of Property B.2 that M  is positive definite for the variational inequality 
formulation in Equation (B.10). Moreover, Property B.4 states that there exists a solution for 
Equation (B.10) when S  is the nonnegative orthant. Then, it follows from [11] that the algorithm 
converges to a solution of Equation (B.10).   

7.6. Proof of Proposition B.1 

Let ∗X  be an equilibrium location decision. Suppose that 1irx∗ =  when 0irf >  and ( ) 0i rq∗ ∗
• =X  

for some i I∈  and r R∈ . Now letting 0irx∗ =  will not change the equilibrium quantities and, 
hence, when firm r  closes her/his facility at location i , she/he improves her/his profit by irf . 
This implies that ∗X  cannot be an equilibrium matrix.   
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7.7. Proof of Proposition B.2 

Suppose that 0 0( ( ) ) 0r
∗Π , <Q X X  for some firm r , r R∈ . Then, this implies that 0

rx  has at least 
one nonzero component. Letting all nonzero components in 0

rx  be 0, we have 0rΠ = , which 
implies that firm r  is better off by not locating any facility. Hence, it follows from Equation 
(B.11) that 0

rx  cannot be in an equilibrium location matrix, i.e., 0X  is not an equilibrium 
location decision. 
 
 
 


